Expression and Cellular Localization of a Modified Type 1 Ryanodine Receptor and L-Type Channel Proteins in Non-Muscle Cells

Expression and Cellular Localization of a Modified Type 1 Ryanodine Receptor and L-Type Channel... Functional and molecular biological evidence exists for the expression of ryanodine receptors in non-muscle cells. In the present study, RT-PCR and 5?-rapid amplification of cDNA 5?-end (5?-RACE analysis) provided evidence for the presence of a type 1 ryanodine receptor/Ca2+ channel (RyR1) in diverse cell types. In parotid gland-derived 3-9 (epithelial) cells, the 3?-end 1589 nucleotide sequence for a rat RyR shared 99% homology with rat brain RyR1. Expression of this RyR mRNA sequence in exocrine acinar cells, endocrine cells, and liver in addition to skeletal muscle and cardiac muscle, suggests wide tissue distribution of the RyR1. Positive identification of a 5?-end sequence was made for RyR1 mRNA in rat skeletal muscle and brain, but not in parotid cells, pancreatic islets, insulinoma cells, or liver. These data suggest that a modified RyR1 is present in exocrine and endocrine cells, and liver. Western blot analysis showed L-type Ca2+ channel-related proteins in parotid acinar cells, which were of comparable size to those identified in skeletal and cardiac muscle, and in brain. Immunocytochemistry carried out on intact parotid acini demonstrated that the dihydropyridine receptor was preferentially co-localized with the IP3 receptor in the apical membranes. From these data we conclude that certain non-muscle cells express a modified RyR1 and L-type Ca2+ channel proteins. These receptor/channels may play a role in Ca2+ signaling involving store-operated Ca2+ influx via receptor-mediated channels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Expression and Cellular Localization of a Modified Type 1 Ryanodine Receptor and L-Type Channel Proteins in Non-Muscle Cells

Loading next page...
 
/lp/springer_journal/expression-and-cellular-localization-of-a-modified-type-1-ryanodine-YDF0lcVkZA
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1012-x
Publisher site
See Article on Publisher Site

Abstract

Functional and molecular biological evidence exists for the expression of ryanodine receptors in non-muscle cells. In the present study, RT-PCR and 5?-rapid amplification of cDNA 5?-end (5?-RACE analysis) provided evidence for the presence of a type 1 ryanodine receptor/Ca2+ channel (RyR1) in diverse cell types. In parotid gland-derived 3-9 (epithelial) cells, the 3?-end 1589 nucleotide sequence for a rat RyR shared 99% homology with rat brain RyR1. Expression of this RyR mRNA sequence in exocrine acinar cells, endocrine cells, and liver in addition to skeletal muscle and cardiac muscle, suggests wide tissue distribution of the RyR1. Positive identification of a 5?-end sequence was made for RyR1 mRNA in rat skeletal muscle and brain, but not in parotid cells, pancreatic islets, insulinoma cells, or liver. These data suggest that a modified RyR1 is present in exocrine and endocrine cells, and liver. Western blot analysis showed L-type Ca2+ channel-related proteins in parotid acinar cells, which were of comparable size to those identified in skeletal and cardiac muscle, and in brain. Immunocytochemistry carried out on intact parotid acini demonstrated that the dihydropyridine receptor was preferentially co-localized with the IP3 receptor in the apical membranes. From these data we conclude that certain non-muscle cells express a modified RyR1 and L-type Ca2+ channel proteins. These receptor/channels may play a role in Ca2+ signaling involving store-operated Ca2+ influx via receptor-mediated channels.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off