Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis

Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under... The Arabidopsis thaliana genome has two genes (AtFC-I and AtFC-II), encoding ferrochelatase, the terminal enzyme of haem biosynthesis. The roles of the two enzymes in the synthesis of haem for different haemoproteins was investigated using reporter gene analysis. A 1.41 kb fragment from the 5' upstream region of the AtFC-II gene was fused to the luciferase gene, and then introduced into tobacco plants, followed by luciferase activity measurements. AtFC-II-LUCwas expressed in all aerial parts of the plant, and was highest in flowers, but it was not expressed in roots. It was unaffected by viral infection, and considerably reduced by wounding or oxidative stress. Similarly, a 1.76 kb region of the AtFC-I promoter was fused to the uidAgene encoding β-glucuronidase. AtFC-I-GUS was expressed in all tissues of the plant, but was higher in roots and flowers than in leaves or stems. It was induced by sucrose, wounding and oxidative stress and, most markedly, by plants undergoing the hypersensitive response to TMV infection. Levels of endogenous ferrochelatase activity were increased in pea chloroplasts isolated from wounded leaves, indicating that the induction in promoter activity is likely to result in increased haem biosynthetic potential. Salicylic acid, but not methyl-jasmonate was able to replace the stress treatment in induction of AtFC-I expression, suggesting that the requirement for haem synthesis is part of the defence response. The implications of the results for the different roles of the two ferrochelatases in haem biosynthesis are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis

Loading next page...
 
/lp/springer_journal/expression-analysis-of-the-two-ferrochelatase-genes-in-arabidopsis-in-QvpFDKYkQQ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1019959224271
Publisher site
See Article on Publisher Site

Abstract

The Arabidopsis thaliana genome has two genes (AtFC-I and AtFC-II), encoding ferrochelatase, the terminal enzyme of haem biosynthesis. The roles of the two enzymes in the synthesis of haem for different haemoproteins was investigated using reporter gene analysis. A 1.41 kb fragment from the 5' upstream region of the AtFC-II gene was fused to the luciferase gene, and then introduced into tobacco plants, followed by luciferase activity measurements. AtFC-II-LUCwas expressed in all aerial parts of the plant, and was highest in flowers, but it was not expressed in roots. It was unaffected by viral infection, and considerably reduced by wounding or oxidative stress. Similarly, a 1.76 kb region of the AtFC-I promoter was fused to the uidAgene encoding β-glucuronidase. AtFC-I-GUS was expressed in all tissues of the plant, but was higher in roots and flowers than in leaves or stems. It was induced by sucrose, wounding and oxidative stress and, most markedly, by plants undergoing the hypersensitive response to TMV infection. Levels of endogenous ferrochelatase activity were increased in pea chloroplasts isolated from wounded leaves, indicating that the induction in promoter activity is likely to result in increased haem biosynthetic potential. Salicylic acid, but not methyl-jasmonate was able to replace the stress treatment in induction of AtFC-I expression, suggesting that the requirement for haem synthesis is part of the defence response. The implications of the results for the different roles of the two ferrochelatases in haem biosynthesis are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off