Expressing foreign genes in the pistil: a comparison of S-RNase constructs in different Nicotiana backgrounds

Expressing foreign genes in the pistil: a comparison of S-RNase constructs in different Nicotiana... Transgenic plant experiments have great potential for extending our understanding of the role of specific genes in controlling pollination. Often, the intent of such experiments is to over-express a gene and test for effects on pollination. We have examined the efficiency of six different S-RNase constructs in Nicotiana species and hybrids. Each construct contained the coding region, intron, and downstream sequences from the Nicotiana alata SA2-RNase gene. Among the six expression constructs, two utilized the cauliflower mosaic virus (CaMV) 35S promoter with duplicated enhancer, and four utilized promoters from genes expressed primarily in pistils. The latter included promoters from the tomato Chi2;1 and 9612 genes, a promoter from the N. alata SA2-RNase gene, and a promoter from the Brassica SLG-13 gene. Some or all of the constructs were tested in N. tabacum, N. plumbaginifolia, N. plumbaginifolia × SI N. alata SC10SC10 hybrids, N. langsdorffii, and N. langsdorffii × SC N. alata hybrids. Stylar specific RNase activities and SA2-RNase transcript levels were determined in transformed plants. Constructs including the tomato Chi2;1 gene promoter or the Brassica SLG-13 promoter provided the highest levels of SA2-RNase expression. Transgene expression patterns were tightly regulated, the highest level of expression was observed in post-anthesis styles. Expression levels of the SA2-RNase transgenes was dependent on the genetic background of the host. Higher levels of SA2-RNase expression were observed in N. plumbaginifolia × SC N. alata hybrids than in N. plumbaginifolia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expressing foreign genes in the pistil: a comparison of S-RNase constructs in different Nicotiana backgrounds

Loading next page...
 
/lp/springer_journal/expressing-foreign-genes-in-the-pistil-a-comparison-of-s-rnase-qiyn0sQJZv
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006060429139
Publisher site
See Article on Publisher Site

Abstract

Transgenic plant experiments have great potential for extending our understanding of the role of specific genes in controlling pollination. Often, the intent of such experiments is to over-express a gene and test for effects on pollination. We have examined the efficiency of six different S-RNase constructs in Nicotiana species and hybrids. Each construct contained the coding region, intron, and downstream sequences from the Nicotiana alata SA2-RNase gene. Among the six expression constructs, two utilized the cauliflower mosaic virus (CaMV) 35S promoter with duplicated enhancer, and four utilized promoters from genes expressed primarily in pistils. The latter included promoters from the tomato Chi2;1 and 9612 genes, a promoter from the N. alata SA2-RNase gene, and a promoter from the Brassica SLG-13 gene. Some or all of the constructs were tested in N. tabacum, N. plumbaginifolia, N. plumbaginifolia × SI N. alata SC10SC10 hybrids, N. langsdorffii, and N. langsdorffii × SC N. alata hybrids. Stylar specific RNase activities and SA2-RNase transcript levels were determined in transformed plants. Constructs including the tomato Chi2;1 gene promoter or the Brassica SLG-13 promoter provided the highest levels of SA2-RNase expression. Transgene expression patterns were tightly regulated, the highest level of expression was observed in post-anthesis styles. Expression levels of the SA2-RNase transgenes was dependent on the genetic background of the host. Higher levels of SA2-RNase expression were observed in N. plumbaginifolia × SC N. alata hybrids than in N. plumbaginifolia.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off