Exploring the hybrid metal extrusion and bonding process for butt welding of Al–Mg–Si alloys

Exploring the hybrid metal extrusion and bonding process for butt welding of Al–Mg–Si alloys The hybrid metal extrusion and bonding (HYB) process is a new solid-state joining technique developed for aluminum alloys. By the use of filler material addition and plastic deformation sound joints can be produced at operating temperatures below 400 °C. The HYB process has the potential to compete with commonplace welding technologies, but its comparative advantages have not yet been fully explored. Here, we present for the first time the results from an exploratory investigation of the mechanical integrity of a 4-mm AA6082-T6 HYB joint, covering both hardness, tensile and Charpy V-notch testing. The joint is found to be free from defects like pores, internal cavities and kissing bonds, yet a soft heat-affected zone (HAZ) is still present. The joint yield strength is 54% of that of the base material, while the corresponding joint efficiency is 66%. The indications are that the HYB process may compete or even outperform conventional welding techniques for aluminum in the future after it has been fully developed and optimized. . . . Keywords Hybrid metal extrusion and bonding (HYB) Solid state joining Al-Mg-Si alloys Mechanical properties 1 Introduction formation, hot cracking, liquation cracking, and bonding de- fects causing additional degradation of the joint [1, http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Exploring the hybrid metal extrusion and bonding process for butt welding of Al–Mg–Si alloys

Loading next page...
 
/lp/springer_journal/exploring-the-hybrid-metal-extrusion-and-bonding-process-for-butt-wfM2ITsbCT
Publisher
Springer London
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-018-2234-0
Publisher site
See Article on Publisher Site

Abstract

The hybrid metal extrusion and bonding (HYB) process is a new solid-state joining technique developed for aluminum alloys. By the use of filler material addition and plastic deformation sound joints can be produced at operating temperatures below 400 °C. The HYB process has the potential to compete with commonplace welding technologies, but its comparative advantages have not yet been fully explored. Here, we present for the first time the results from an exploratory investigation of the mechanical integrity of a 4-mm AA6082-T6 HYB joint, covering both hardness, tensile and Charpy V-notch testing. The joint is found to be free from defects like pores, internal cavities and kissing bonds, yet a soft heat-affected zone (HAZ) is still present. The joint yield strength is 54% of that of the base material, while the corresponding joint efficiency is 66%. The indications are that the HYB process may compete or even outperform conventional welding techniques for aluminum in the future after it has been fully developed and optimized. . . . Keywords Hybrid metal extrusion and bonding (HYB) Solid state joining Al-Mg-Si alloys Mechanical properties 1 Introduction formation, hot cracking, liquation cracking, and bonding de- fects causing additional degradation of the joint [1,

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off