Exploiting SSDs in operational multiversion databases

Exploiting SSDs in operational multiversion databases Multiversion databases store both current and historical data. Rows are typically annotated with timestamps representing the period when the row is/was valid. We develop novel techniques to reduce index maintenance in multiversion databases, so that indexes can be used effectively for analytical queries over current data without being a heavy burden on transaction throughput. To achieve this end, we re-design persistent index data structures in the storage hierarchy to employ an extra level of indirection. The indirection level is stored on solid-state disks that can support very fast random I/Os, so that traversing the extra level of indirection incurs a relatively small overhead. The extra level of indirection dramatically reduces the number of magnetic disk I/Os that are needed for index updates and localizes maintenance to indexes on updated attributes. Additionally, we batch insertions within the indirection layer in order to reduce physical disk I/Os for indexing new records. In this work, we further exploit SSDs by introducing novel DeltaBlock techniques for storing the recent changes to data on SSDs. Using our DeltaBlock, we propose an efficient method to periodically flush the recently changed data from SSDs to HDDs such that, on the one hand, we keep track of every change (or delta) for every record, and, on the other hand, we avoid redundantly storing the unchanged portion of updated records. By reducing the index maintenance overhead on transactions, we enable operational data stores to create more indexes to support queries. We have developed a prototype of our indirection proposal by extending the widely used generalized search tree open-source project, which is also employed in PostgreSQL. Our working implementation demonstrates that we can significantly reduce index maintenance and/or query processing cost by a factor of 3. For the insertion of new records, our novel batching technique can save up to 90 % of the insertion time. For updates, our prototype demonstrates that we can significantly reduce the database size by up to 80 % even with a modest space allocated for DeltaBlocks on SSDs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Exploiting SSDs in operational multiversion databases

Loading next page...
 
/lp/springer_journal/exploiting-ssds-in-operational-multiversion-databases-9KvYQ2Ww0h
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0410-5
Publisher site
See Article on Publisher Site

Abstract

Multiversion databases store both current and historical data. Rows are typically annotated with timestamps representing the period when the row is/was valid. We develop novel techniques to reduce index maintenance in multiversion databases, so that indexes can be used effectively for analytical queries over current data without being a heavy burden on transaction throughput. To achieve this end, we re-design persistent index data structures in the storage hierarchy to employ an extra level of indirection. The indirection level is stored on solid-state disks that can support very fast random I/Os, so that traversing the extra level of indirection incurs a relatively small overhead. The extra level of indirection dramatically reduces the number of magnetic disk I/Os that are needed for index updates and localizes maintenance to indexes on updated attributes. Additionally, we batch insertions within the indirection layer in order to reduce physical disk I/Os for indexing new records. In this work, we further exploit SSDs by introducing novel DeltaBlock techniques for storing the recent changes to data on SSDs. Using our DeltaBlock, we propose an efficient method to periodically flush the recently changed data from SSDs to HDDs such that, on the one hand, we keep track of every change (or delta) for every record, and, on the other hand, we avoid redundantly storing the unchanged portion of updated records. By reducing the index maintenance overhead on transactions, we enable operational data stores to create more indexes to support queries. We have developed a prototype of our indirection proposal by extending the widely used generalized search tree open-source project, which is also employed in PostgreSQL. Our working implementation demonstrates that we can significantly reduce index maintenance and/or query processing cost by a factor of 3. For the insertion of new records, our novel batching technique can save up to 90 % of the insertion time. For updates, our prototype demonstrates that we can significantly reduce the database size by up to 80 % even with a modest space allocated for DeltaBlocks on SSDs.

Journal

The VLDB JournalSpringer Journals

Published: Nov 17, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off