Explaining the volatility smile: non-parametric versus parametric option models

Explaining the volatility smile: non-parametric versus parametric option models We employ a “non-parametric” pricing approach of European options to explain the volatility smile. In contrast to “parametric” models that assume that the underlying state variable(s) follows a stochastic process that adheres to a strict functional form, “non-parametric” models directly fit the end distribution of the underlying state variable(s) with statistical distributions that are not represented by parametric functions. We derive an approximation formula which prices S&P 500 index options in closed form which corresponds to the lower bound recently proposed by Lin et al. (Rev Quant Financ Account 38(1):109–129, 2012). Our model yields option prices that are more consistent with the data than the option prices that are generated by several widely used models. Although a quantitative comparison with other non-parametric models is more difficult, there are indications that our model is also more consistent with the data than these models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Explaining the volatility smile: non-parametric versus parametric option models

Loading next page...
 
/lp/springer_journal/explaining-the-volatility-smile-non-parametric-versus-parametric-JZEN5yZDlm
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1007/s11156-014-0491-z
Publisher site
See Article on Publisher Site

Abstract

We employ a “non-parametric” pricing approach of European options to explain the volatility smile. In contrast to “parametric” models that assume that the underlying state variable(s) follows a stochastic process that adheres to a strict functional form, “non-parametric” models directly fit the end distribution of the underlying state variable(s) with statistical distributions that are not represented by parametric functions. We derive an approximation formula which prices S&P 500 index options in closed form which corresponds to the lower bound recently proposed by Lin et al. (Rev Quant Financ Account 38(1):109–129, 2012). Our model yields option prices that are more consistent with the data than the option prices that are generated by several widely used models. Although a quantitative comparison with other non-parametric models is more difficult, there are indications that our model is also more consistent with the data than these models.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Jan 1, 2015

References

  • Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options
    Bates, D
  • Empirical option pricing: a retrospection
    Bates, DS
  • The valuation of option contracts and a test of market efficiency
    Black, F; Scholes, M
  • The pricing of contingent claims in discrete time
    Brennan, Michael

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off