Expired pharmaceutical compounds as potential inhibitors for cast iron corrosion in acidic medium

Expired pharmaceutical compounds as potential inhibitors for cast iron corrosion in acidic medium The inhibition potential of some expired waste pharmaceutical drugs, namely cefpodoxime (CF), levofloxacin (LV), ofloxacin (OX) and linezolid (LZ) on cast iron corrosion in 1 M HCl has been tested for the first time by chemical (weight loss) and electrochemical (Tafel polarization and impedance spectroscopy) methods. At a constant acid concentration (1 M HCl), the inhibition efficiency (IE%) increased with the increase of the inhibitors’ concentration. At optimum inhibitor concentration, the CF exhibited the highest inhibition efficiency (95.2%). Inhibitors were adsorbed on the cast iron surface through the Langmuir adsorption isotherm at all concentrations and temperatures studied. Antagonism and synergism arising between the halide ions and the inhibitors were also explained. Thermodynamic parameters have been calculated and are discussed. Tafel polarization curves pointed to all inhibitors acting as mixed-type. Corrosion inhibition properties of the inhibitors have been inferred from FT-IR spectra, UV–Vis spectra, surface morphological analysis and wide-angle X-ray diffraction studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Expired pharmaceutical compounds as potential inhibitors for cast iron corrosion in acidic medium

Loading next page...
 
/lp/springer_journal/expired-pharmaceutical-compounds-as-potential-inhibitors-for-cast-iron-y10xLzTeyH
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2852-9
Publisher site
See Article on Publisher Site

Abstract

The inhibition potential of some expired waste pharmaceutical drugs, namely cefpodoxime (CF), levofloxacin (LV), ofloxacin (OX) and linezolid (LZ) on cast iron corrosion in 1 M HCl has been tested for the first time by chemical (weight loss) and electrochemical (Tafel polarization and impedance spectroscopy) methods. At a constant acid concentration (1 M HCl), the inhibition efficiency (IE%) increased with the increase of the inhibitors’ concentration. At optimum inhibitor concentration, the CF exhibited the highest inhibition efficiency (95.2%). Inhibitors were adsorbed on the cast iron surface through the Langmuir adsorption isotherm at all concentrations and temperatures studied. Antagonism and synergism arising between the halide ions and the inhibitors were also explained. Thermodynamic parameters have been calculated and are discussed. Tafel polarization curves pointed to all inhibitors acting as mixed-type. Corrosion inhibition properties of the inhibitors have been inferred from FT-IR spectra, UV–Vis spectra, surface morphological analysis and wide-angle X-ray diffraction studies.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off