Experimental study on turbulent natural convection heat transfer in water with sub-millimeter-bubble injection

Experimental study on turbulent natural convection heat transfer in water with... Using thermocouples and a particle tracking velocimetry technique, temperature and velocity measurements are conducted to investigate flow and heat transfer characteristics of turbulent natural convection from a vertical heated plate in water with sub-millimeter-bubble injection. Hydrogen-bubbles generated by the electrolysis of water are used as the sub-millimeter-bubbles. In the turbulent region, the heat transfer deterioration occurs for a bubble flow rate Q = 33 mm3/s, while the heat transfer enhancement occurs for Q = 56 mm3/s. Temperature and velocity measurements suggest that the former is caused by a delay of the transition due to the bubble-induced upward flow. On the other hand, the latter is mainly due to two factors: one is the enhancement of the rotation of eddies in the outer layer, and the other is the increase in the gradient of the streamwise liquid velocity at the heated wall. These are caused by bubbles, which are located in the inner layer, rising at high speed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study on turbulent natural convection heat transfer in water with sub-millimeter-bubble injection

Loading next page...
 
/lp/springer_journal/experimental-study-on-turbulent-natural-convection-heat-transfer-in-nugKhZHQQI
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0838-8
Publisher site
See Article on Publisher Site

Abstract

Using thermocouples and a particle tracking velocimetry technique, temperature and velocity measurements are conducted to investigate flow and heat transfer characteristics of turbulent natural convection from a vertical heated plate in water with sub-millimeter-bubble injection. Hydrogen-bubbles generated by the electrolysis of water are used as the sub-millimeter-bubbles. In the turbulent region, the heat transfer deterioration occurs for a bubble flow rate Q = 33 mm3/s, while the heat transfer enhancement occurs for Q = 56 mm3/s. Temperature and velocity measurements suggest that the former is caused by a delay of the transition due to the bubble-induced upward flow. On the other hand, the latter is mainly due to two factors: one is the enhancement of the rotation of eddies in the outer layer, and the other is the increase in the gradient of the streamwise liquid velocity at the heated wall. These are caused by bubbles, which are located in the inner layer, rising at high speed.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 16, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off