Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles

Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles In response to the ever increasing need for efficient management of energy consumption, there have been extensive studies on drag reduction in many types of transport systems. In this paper, we examine the reduction of skin frictional drag in a pipe with an internal surface fabricated with cavity array by using the slip obtained on a convex air bubble array. The bubble formation was observed in a microchannel by using a high-speed CCD camera with respect to time and a micro PIV characterized by measuring velocity distribution around the convex bubble. Also, to investigate the possibility of the drag reduction, the volumetric flow rate and momentum flux were compared with and without the convex air bubble array in the microchannel. The measured momentum flux was rapidly increased around the convex air bubbles, which expected the reduction of skin frictional drag. Also, the slip influence distance was determined for the different bubble heights along the microchannel. The convex air bubble with larger height provides longer slip influence distance. Finally, the cavity array was fabricated on the internal surface of a pipe. The size of the cavity array was designed 100 μm in a rectangle, and they were spaced with 150 μm. The pipe diameter was 28.4 mm, and its length was 500 mm. The pipe was installed into a test rig to evaluate the drag reduction and was experimented in the turbulent flow condition, in which Reynolds number was ranged from 40,000 to 220,000. Maximum drag reduction of 10 % was obtained in the cavity pipe, while that of the smooth pipe was shown <2 %. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles

Loading next page...
 
/lp/springer_journal/experimental-study-on-the-reduction-of-skin-frictional-drag-in-pipe-eNmbjtXbo0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1722-8
Publisher site
See Article on Publisher Site

Abstract

In response to the ever increasing need for efficient management of energy consumption, there have been extensive studies on drag reduction in many types of transport systems. In this paper, we examine the reduction of skin frictional drag in a pipe with an internal surface fabricated with cavity array by using the slip obtained on a convex air bubble array. The bubble formation was observed in a microchannel by using a high-speed CCD camera with respect to time and a micro PIV characterized by measuring velocity distribution around the convex bubble. Also, to investigate the possibility of the drag reduction, the volumetric flow rate and momentum flux were compared with and without the convex air bubble array in the microchannel. The measured momentum flux was rapidly increased around the convex air bubbles, which expected the reduction of skin frictional drag. Also, the slip influence distance was determined for the different bubble heights along the microchannel. The convex air bubble with larger height provides longer slip influence distance. Finally, the cavity array was fabricated on the internal surface of a pipe. The size of the cavity array was designed 100 μm in a rectangle, and they were spaced with 150 μm. The pipe diameter was 28.4 mm, and its length was 500 mm. The pipe was installed into a test rig to evaluate the drag reduction and was experimented in the turbulent flow condition, in which Reynolds number was ranged from 40,000 to 220,000. Maximum drag reduction of 10 % was obtained in the cavity pipe, while that of the smooth pipe was shown <2 %.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 16, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off