Experimental study on oscillating grid turbulence and free surface fluctuation

Experimental study on oscillating grid turbulence and free surface fluctuation This paper analyses the interaction between the turbulence and free surface. The phenomenon takes place in many natural flows and industrial processes. In the present experiments, turbulence is generated by a vertically oscillating grid moving beneath the free surface. Fluid velocity has been measured through a hot-film anemometer, and the free surface elevation has been measured by an ultrasonic sensor. Integral length scales and several turbulence estimators have been computed. In order to detect the generation of turbulence near the free surface, the correlation between free surface elevation and the underneath flow velocity has been studied, as well as the time lag between turbulence and free surface. The free surface dynamics has been characterized by a velocity scale and a length scale. The kinetic energy associated with the free surface fluctuations increases with the Reynolds number at a rate depending on the frequency of the grid movement. For Reynolds number larger than ≈1000, however, the relationships collapse to a single curve characterized by a lower rate. The present experiments do not achieve the inertial sub-range in the vertical velocity fluctuations, and the estimated spectrum decays with an exponent smaller than −3, which is the typical value for the two-dimensional turbulence in the inertial sub-range. The macro length scale, estimated by using the Taylor’s frozen turbulence hypothesis, experiences a decay away from the grid, which follows reasonably well the profile of Thompson and Turner (J Fluid Mechanics 67: 349–368, 1975). The micro length scale reduces immediately beneath the free surface, which can be interpreted by the increase of dissipation rate in the subsurface layer. The classification diagram by Brocchini and Peregrine (J Fluid Mech 449: 225–254, 2001) indicates that most tests fall in the weak turbulence domain, but some tests fall in the wavy domain. The vertical velocity fluctuations and the free surface level show a significant correlation with a negative phase lag, that is, the free surface fluctuations are ahead of the vertical velocity fluctuations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study on oscillating grid turbulence and free surface fluctuation

Loading next page...
Copyright © 2012 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial