Experimental study on oscillating grid turbulence and free surface fluctuation

Experimental study on oscillating grid turbulence and free surface fluctuation This paper analyses the interaction between the turbulence and free surface. The phenomenon takes place in many natural flows and industrial processes. In the present experiments, turbulence is generated by a vertically oscillating grid moving beneath the free surface. Fluid velocity has been measured through a hot-film anemometer, and the free surface elevation has been measured by an ultrasonic sensor. Integral length scales and several turbulence estimators have been computed. In order to detect the generation of turbulence near the free surface, the correlation between free surface elevation and the underneath flow velocity has been studied, as well as the time lag between turbulence and free surface. The free surface dynamics has been characterized by a velocity scale and a length scale. The kinetic energy associated with the free surface fluctuations increases with the Reynolds number at a rate depending on the frequency of the grid movement. For Reynolds number larger than ≈1000, however, the relationships collapse to a single curve characterized by a lower rate. The present experiments do not achieve the inertial sub-range in the vertical velocity fluctuations, and the estimated spectrum decays with an exponent smaller than −3, which is the typical value for the two-dimensional turbulence in the inertial sub-range. The macro length scale, estimated by using the Taylor’s frozen turbulence hypothesis, experiences a decay away from the grid, which follows reasonably well the profile of Thompson and Turner (J Fluid Mechanics 67: 349–368, 1975). The micro length scale reduces immediately beneath the free surface, which can be interpreted by the increase of dissipation rate in the subsurface layer. The classification diagram by Brocchini and Peregrine (J Fluid Mech 449: 225–254, 2001) indicates that most tests fall in the weak turbulence domain, but some tests fall in the wavy domain. The vertical velocity fluctuations and the free surface level show a significant correlation with a negative phase lag, that is, the free surface fluctuations are ahead of the vertical velocity fluctuations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study on oscillating grid turbulence and free surface fluctuation

Loading next page...
 
/lp/springer_journal/experimental-study-on-oscillating-grid-turbulence-and-free-surface-MJqHx7q50W
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1367-4
Publisher site
See Article on Publisher Site

Abstract

This paper analyses the interaction between the turbulence and free surface. The phenomenon takes place in many natural flows and industrial processes. In the present experiments, turbulence is generated by a vertically oscillating grid moving beneath the free surface. Fluid velocity has been measured through a hot-film anemometer, and the free surface elevation has been measured by an ultrasonic sensor. Integral length scales and several turbulence estimators have been computed. In order to detect the generation of turbulence near the free surface, the correlation between free surface elevation and the underneath flow velocity has been studied, as well as the time lag between turbulence and free surface. The free surface dynamics has been characterized by a velocity scale and a length scale. The kinetic energy associated with the free surface fluctuations increases with the Reynolds number at a rate depending on the frequency of the grid movement. For Reynolds number larger than ≈1000, however, the relationships collapse to a single curve characterized by a lower rate. The present experiments do not achieve the inertial sub-range in the vertical velocity fluctuations, and the estimated spectrum decays with an exponent smaller than −3, which is the typical value for the two-dimensional turbulence in the inertial sub-range. The macro length scale, estimated by using the Taylor’s frozen turbulence hypothesis, experiences a decay away from the grid, which follows reasonably well the profile of Thompson and Turner (J Fluid Mechanics 67: 349–368, 1975). The micro length scale reduces immediately beneath the free surface, which can be interpreted by the increase of dissipation rate in the subsurface layer. The classification diagram by Brocchini and Peregrine (J Fluid Mech 449: 225–254, 2001) indicates that most tests fall in the weak turbulence domain, but some tests fall in the wavy domain. The vertical velocity fluctuations and the free surface level show a significant correlation with a negative phase lag, that is, the free surface fluctuations are ahead of the vertical velocity fluctuations.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 4, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off