Experimental study on flow kinematics and impact pressure in liquid sloshing

Experimental study on flow kinematics and impact pressure in liquid sloshing This paper experimentally studied flow kinematics and impact pressure of a partially filled liquid sloshing flow produced by the periodic motion of a rectangular tank. The study focused on quantifying the flow velocities and impact pressures induced by the flow. Filled with water at a 30 % filling ratio, the tank oscillated at a resonant frequency and generated the violent sloshing flow. The flow propagated like breaking waves that plunged on both side walls and formed up-rushing jets that impacted on the top wall. Velocities of the multiphase flow were measured using the bubble image velocimetry technique. A total of 15 pressure sensors were mounted on the top wall and a side wall to measure the impact pressures. The local kinetic energy obtained by the measured local velocities was used to correlate with the corresponding pressures and determine the impact coefficient. In the sloshing flow, the flow direction was dominantly horizontal in the same direction of the tank motion before the wave crest broke and impinged on a side wall. At this stage, the maximum flow velocities reached 1.6C with C being the wave phase speed. After the wave impingement, the uprising jet moved in the vertical direction with a maximum velocity reached 3.6C before it impacted on the top wall. It was observed that the impact coefficients differed by almost one order of magnitude between the side wall impact and the top wall impact, mainly due to the large difference between the local velocities. A nearly constant impact coefficient was found for both side wall and top wall impacts if the impact pressures were directly correlated with the flow kinetic energy calculated using C instead of the local velocities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study on flow kinematics and impact pressure in liquid sloshing

Loading next page...
 
/lp/springer_journal/experimental-study-on-flow-kinematics-and-impact-pressure-in-liquid-G6ZFa6J1xX
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1592-5
Publisher site
See Article on Publisher Site

Abstract

This paper experimentally studied flow kinematics and impact pressure of a partially filled liquid sloshing flow produced by the periodic motion of a rectangular tank. The study focused on quantifying the flow velocities and impact pressures induced by the flow. Filled with water at a 30 % filling ratio, the tank oscillated at a resonant frequency and generated the violent sloshing flow. The flow propagated like breaking waves that plunged on both side walls and formed up-rushing jets that impacted on the top wall. Velocities of the multiphase flow were measured using the bubble image velocimetry technique. A total of 15 pressure sensors were mounted on the top wall and a side wall to measure the impact pressures. The local kinetic energy obtained by the measured local velocities was used to correlate with the corresponding pressures and determine the impact coefficient. In the sloshing flow, the flow direction was dominantly horizontal in the same direction of the tank motion before the wave crest broke and impinged on a side wall. At this stage, the maximum flow velocities reached 1.6C with C being the wave phase speed. After the wave impingement, the uprising jet moved in the vertical direction with a maximum velocity reached 3.6C before it impacted on the top wall. It was observed that the impact coefficients differed by almost one order of magnitude between the side wall impact and the top wall impact, mainly due to the large difference between the local velocities. A nearly constant impact coefficient was found for both side wall and top wall impacts if the impact pressures were directly correlated with the flow kinetic energy calculated using C instead of the local velocities.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 6, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off