Experimental study on flexural performance of glued-laminated-timber-bamboo beams

Experimental study on flexural performance of glued-laminated-timber-bamboo beams Engineered bamboo, produced through the technique of gluing and reconstituting, has better mechanical properties than round bamboo and some wood products. This paper studies the flexural performance of laminated beams produced with timber and engineered bamboo. The six-layer beams were made from Douglas fir, spruce, bamboo scrimber and laminated bamboo, or a combination of these. It is confirmed that glued-laminated wood beams produced with wood of weak strength, like spruce, can be strengthened by gluing engineered bamboo lumbers on the outer faces, thus achieving better utilization of the fast growing economic wood species. Flexural failure of the laminated beams was primarily triggered by tensile fracture of the bottom fiber in mid-span, followed by horizontal tearing beside the broken surface. No relative slip between layers was observed before failure, therefore the flexural capacity of the laminated beams can be predicted using equilibrium and compatibility conditions according to the plane section assumption. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials and Structures Springer Journals

Experimental study on flexural performance of glued-laminated-timber-bamboo beams

Loading next page...
 
/lp/springer_journal/experimental-study-on-flexural-performance-of-glued-laminated-timber-W0P9NFVC9d
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by RILEM
Subject
Engineering; Structural Mechanics; Materials Science, general; Theoretical and Applied Mechanics; Operating Procedures, Materials Treatment; Civil Engineering; Building Materials
ISSN
1359-5997
eISSN
1871-6873
D.O.I.
10.1617/s11527-017-1135-2
Publisher site
See Article on Publisher Site

Abstract

Engineered bamboo, produced through the technique of gluing and reconstituting, has better mechanical properties than round bamboo and some wood products. This paper studies the flexural performance of laminated beams produced with timber and engineered bamboo. The six-layer beams were made from Douglas fir, spruce, bamboo scrimber and laminated bamboo, or a combination of these. It is confirmed that glued-laminated wood beams produced with wood of weak strength, like spruce, can be strengthened by gluing engineered bamboo lumbers on the outer faces, thus achieving better utilization of the fast growing economic wood species. Flexural failure of the laminated beams was primarily triggered by tensile fracture of the bottom fiber in mid-span, followed by horizontal tearing beside the broken surface. No relative slip between layers was observed before failure, therefore the flexural capacity of the laminated beams can be predicted using equilibrium and compatibility conditions according to the plane section assumption.

Journal

Materials and StructuresSpringer Journals

Published: Jan 11, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off