Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry

Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry The compression wave generated by a train entering a tunnel has been widely studied. However; the resulting exit flow created at the tunnel portal has never been investigated. The experimental work reported in the present paper provides some insight into the structure of this flow and its main characteristics. Experiments were conducted with a 1/140th scale apparatus and the explored range of the train speed was 5–50 m/s (M ≤ 0.15). The study focused on the influence of the train speed and the train nose geometry on the flow. Unsteady velocity measurements were taken to attempt to clarify the influence of the train speed on the jet induced at the tunnel portal when the train enters. A mass balance was undertaken to compare the quantity of air ejected from the tunnel to that compressed inside (i.e. involved in the compression wave). The study revealed that, at low speed, the quantity of air compressed to that ejected is of the order 5:1, subject to boundary conditions. At high speed, the volume ejected is comparable to that compressed. Interestingly, the train nose geometry does not influence the mass balance. The jet momentum was also calculated and found to increase with the train speed and is insensitive to the train nose geometry. Careful discussions are provided in the paper on how these results can be extended to the full-scale case. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry

Loading next page...
 
/lp/springer_journal/experimental-study-of-the-unsteady-aerodynamic-field-outside-a-tunnel-II7u0URK9B
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480000159
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial