Experimental study of the flow regimes resulting from the impact of an intermittent gasoline spray

Experimental study of the flow regimes resulting from the impact of an intermittent gasoline spray The present paper reports a complete set of measurements made with a two-component phase Doppler anemometer of the two-phase flow generated at the impact of a transient gasoline spray onto a flat surface. The spray is generated by a pintle injector and the fuel used was gasoline. The measurements of droplet size–velocity were processed to provide time fluxes of number, mass, normal momentum, and energy of the poly-dispersion of droplets ejected at impact, and analyzed based on predictive tools available in the literature. The results show that splash is the dominant mechanism by which secondary droplets are ejected from the surface, either in the stagnation region or in the core region of the spray. In the stagnation region, a large fraction of each incident droplet adheres to the surface and the axial incident momentum contributes with a larger parcel than tangential momentum. As a result, the normal velocity of ejected droplets is much smaller than that of the original incident droplets, while tangential velocity is enhanced. The region near the stagnation point is immediately flooded upon impact of the leading front of the spray, forming a liquid film that is forced to move radially outwards as droplets continue to impinge during the steady period. Spray/wall interaction in the core region thus occurs in the presence of a moving thin liquid film, which enhances transfer of tangential momentum. As a result, film spreading and dynamics as a result of impingement forces are crucial to accurate model spray/wall interaction. The outer region of the spray is dominated by the vortical structure induced by shear forces, which entrains small responsive secondary droplets to re-impinge. Furthermore, prediction of the outcome of spray impact requires a precise knowledge of the two-phase flow in the presence of the target. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study of the flow regimes resulting from the impact of an intermittent gasoline spray

Loading next page...
 
/lp/springer_journal/experimental-study-of-the-flow-regimes-resulting-from-the-impact-of-an-cVkKxXND4E
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0868-1
Publisher site
See Article on Publisher Site

Abstract

The present paper reports a complete set of measurements made with a two-component phase Doppler anemometer of the two-phase flow generated at the impact of a transient gasoline spray onto a flat surface. The spray is generated by a pintle injector and the fuel used was gasoline. The measurements of droplet size–velocity were processed to provide time fluxes of number, mass, normal momentum, and energy of the poly-dispersion of droplets ejected at impact, and analyzed based on predictive tools available in the literature. The results show that splash is the dominant mechanism by which secondary droplets are ejected from the surface, either in the stagnation region or in the core region of the spray. In the stagnation region, a large fraction of each incident droplet adheres to the surface and the axial incident momentum contributes with a larger parcel than tangential momentum. As a result, the normal velocity of ejected droplets is much smaller than that of the original incident droplets, while tangential velocity is enhanced. The region near the stagnation point is immediately flooded upon impact of the leading front of the spray, forming a liquid film that is forced to move radially outwards as droplets continue to impinge during the steady period. Spray/wall interaction in the core region thus occurs in the presence of a moving thin liquid film, which enhances transfer of tangential momentum. As a result, film spreading and dynamics as a result of impingement forces are crucial to accurate model spray/wall interaction. The outer region of the spray is dominated by the vortical structure induced by shear forces, which entrains small responsive secondary droplets to re-impinge. Furthermore, prediction of the outcome of spray impact requires a precise knowledge of the two-phase flow in the presence of the target.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 2, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off