Experimental Study of Right Ventricular Hemodynamics After Tricuspid Valve Replacement Therapies to Treat Tricuspid Regurgitation

Experimental Study of Right Ventricular Hemodynamics After Tricuspid Valve Replacement Therapies... The increased understanding of right heart diseases has led to more aggressive interventions to manage functional tricuspid regurgitation (FTR). In some cases of FTR, prosthetic valve replacement is typically considered when concomitant organic components or significant geometrical distortions are involved in the pathology of the tricuspid valve. However, little is known of the performance of current devices in the right heart circulation. In this study, a novel in vitro mock circulatory system that incorporated a realistic tricuspid valve apparatus in a patient-specific silicon right ventricle (RV) was designed and fabricated. The system was calibrated to emulate severe FTR, enabling the investigation of RV hemodynamics in pre- and post-implantation of tri-leaflet tissue implant and bi-leaflet mechanical implant. 2D particle imaging velocimetry was performed to visualize flow and quantify relevant hemodynamic parameters. While our results showed all prosthetic implants improved cardiac output, these implants also subjected the RV to increased turbulence level. Our study also revealed that the implants did not create the optimal behavior of fluid transfer in the RV as we expected. Among the implants tested, tissue implant created the most dominant vortices, which persisted throughout diastole; its observed strong negative vortex could lead to increase energy expenditure due to undesired fluid direction. In contrast, both native valve and mechanical implant had both weaker vortex formation as well as more significant vortex dissipation. Interestingly, the vortex dissipation of native valve was associated with streamlined flow pattern that tended towards the pulmonary outlet, while the mechanical implant generated more regions of flow stagnation within the RV. These findings heighten the imperative to improve designs of current heart valves to be used in the right circulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cardiovascular Engineering and Technology Springer Journals

Experimental Study of Right Ventricular Hemodynamics After Tricuspid Valve Replacement Therapies to Treat Tricuspid Regurgitation

Loading next page...
 
/lp/springer_journal/experimental-study-of-right-ventricular-hemodynamics-after-tricuspid-0WB2Q1QQI8
Publisher
Springer US
Copyright
Copyright © 2017 by Biomedical Engineering Society
Subject
Engineering; Biomedical Engineering; Cardiology; Biomedicine, general
ISSN
1869-408X
eISSN
1869-4098
D.O.I.
10.1007/s13239-017-0328-8
Publisher site
See Article on Publisher Site

Abstract

The increased understanding of right heart diseases has led to more aggressive interventions to manage functional tricuspid regurgitation (FTR). In some cases of FTR, prosthetic valve replacement is typically considered when concomitant organic components or significant geometrical distortions are involved in the pathology of the tricuspid valve. However, little is known of the performance of current devices in the right heart circulation. In this study, a novel in vitro mock circulatory system that incorporated a realistic tricuspid valve apparatus in a patient-specific silicon right ventricle (RV) was designed and fabricated. The system was calibrated to emulate severe FTR, enabling the investigation of RV hemodynamics in pre- and post-implantation of tri-leaflet tissue implant and bi-leaflet mechanical implant. 2D particle imaging velocimetry was performed to visualize flow and quantify relevant hemodynamic parameters. While our results showed all prosthetic implants improved cardiac output, these implants also subjected the RV to increased turbulence level. Our study also revealed that the implants did not create the optimal behavior of fluid transfer in the RV as we expected. Among the implants tested, tissue implant created the most dominant vortices, which persisted throughout diastole; its observed strong negative vortex could lead to increase energy expenditure due to undesired fluid direction. In contrast, both native valve and mechanical implant had both weaker vortex formation as well as more significant vortex dissipation. Interestingly, the vortex dissipation of native valve was associated with streamlined flow pattern that tended towards the pulmonary outlet, while the mechanical implant generated more regions of flow stagnation within the RV. These findings heighten the imperative to improve designs of current heart valves to be used in the right circulation.

Journal

Cardiovascular Engineering and TechnologySpringer Journals

Published: Aug 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off