Experimental Study of Remotely Triggered Rockburst Induced by a Tunnel Axial Dynamic Disturbance Under True-Triaxial Conditions

Experimental Study of Remotely Triggered Rockburst Induced by a Tunnel Axial Dynamic Disturbance... During deep underground excavation, dynamic ejection failure of a highly stressed rock mass near an excavated boundary is easily triggered by a dynamic disturbance in the tunnel axial direction, induced by blasting on the tunnel face. Such a dynamic ejection failure is usually called remotely triggered rockburst, and it poses a threat to underground construction. To clarify the characteristics of remotely triggered rockburst, the development of remotely triggered rockbursts of granite rock specimens was investigated using an improved true-triaxial test system. Experimental results show that with increasing static Z-direction stress (i.e., in situ tangential stress on the cross section of the tunnel), rockburst is triggered more easily and the kinetic energy of ejected fragments increases. Under other constant static stresses and dynamic disturbance, with increasing horizontal stress including X-direction stress (i.e., in situ axial stress) or Y-direction stress (i.e., in situ radial stress on the cross section of the tunnel), rockburst is more difficult to trigger and the kinetic energy of the ejected fragments decreases. Under constant static stresses, once the amplitude and frequency of the dynamic loading exceed their thresholds, the rockburst intensity increases rapidly and the rockburst can be triggered much more easily with small increments of the amplitude and frequency. Furthermore, Z-direction strain increases during the dynamic disturbance process, indicating that the ultimate energy-storage capacity of the specimen decreases with increasing damage. When the elastic strain energy is greater than the ultimate energy-storage capacity of the damaged specimen, part of the residual elastic energy is converted into kinetic energy of the ejected fragments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rock Mechanics and Rock Engineering Springer Journals

Experimental Study of Remotely Triggered Rockburst Induced by a Tunnel Axial Dynamic Disturbance Under True-Triaxial Conditions

Loading next page...
 
/lp/springer_journal/experimental-study-of-remotely-triggered-rockburst-induced-by-a-tunnel-utZFdiHIzk
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Earth Sciences; Geophysics/Geodesy; Civil Engineering
ISSN
0723-2632
eISSN
1434-453X
D.O.I.
10.1007/s00603-017-1218-y
Publisher site
See Article on Publisher Site

Abstract

During deep underground excavation, dynamic ejection failure of a highly stressed rock mass near an excavated boundary is easily triggered by a dynamic disturbance in the tunnel axial direction, induced by blasting on the tunnel face. Such a dynamic ejection failure is usually called remotely triggered rockburst, and it poses a threat to underground construction. To clarify the characteristics of remotely triggered rockburst, the development of remotely triggered rockbursts of granite rock specimens was investigated using an improved true-triaxial test system. Experimental results show that with increasing static Z-direction stress (i.e., in situ tangential stress on the cross section of the tunnel), rockburst is triggered more easily and the kinetic energy of ejected fragments increases. Under other constant static stresses and dynamic disturbance, with increasing horizontal stress including X-direction stress (i.e., in situ axial stress) or Y-direction stress (i.e., in situ radial stress on the cross section of the tunnel), rockburst is more difficult to trigger and the kinetic energy of the ejected fragments decreases. Under constant static stresses, once the amplitude and frequency of the dynamic loading exceed their thresholds, the rockburst intensity increases rapidly and the rockburst can be triggered much more easily with small increments of the amplitude and frequency. Furthermore, Z-direction strain increases during the dynamic disturbance process, indicating that the ultimate energy-storage capacity of the specimen decreases with increasing damage. When the elastic strain energy is greater than the ultimate energy-storage capacity of the damaged specimen, part of the residual elastic energy is converted into kinetic energy of the ejected fragments.

Journal

Rock Mechanics and Rock EngineeringSpringer Journals

Published: Apr 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off