Experimental Study of Nanofluids Applied in EOR Processes

Experimental Study of Nanofluids Applied in EOR Processes Nanoemulsions are small droplet-sized systems that have low surface tension and a small percentage of active material in their composition. In this study, low oil content nanoemulsion systems were developed for the use in enhanced oil recovery (EOR). The experiments were performed on a device capable of simulating petroleum reservoir conditions using sandstone rock cores. Nanoemulsions were obtained from a pre-selected microemulsion system composed of: RNX95 as surfactant, isopropyl alcohol as cosurfactant, kerosene as oil phase, and distilled water as aqueous phase. Different percentages of polyacrylamide were added to the systems obtained to evaluate the influence of viscosity in EOR results. The nanoemulsion droplet sizes ranged from 9.22 to 14.8 nm. Surface tension values were in the range of 33.6–39.7  dyn/cm. A nanoemulsion system with 2.5 wt% surfactant was used in EOR assays. The oil recovery was directly proportional to polymer percentage in the nanoemulsion, ranging from 39.6 to 76.8%. The total oil in the place recovery ranged from 74.5 to 90%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Surfactants and Detergents Springer Journals
Loading next page...
 
/lp/springer_journal/experimental-study-of-nanofluids-applied-in-eor-processes-X6gw01r83W
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by AOCS
Subject
Chemistry; Industrial Chemistry/Chemical Engineering; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Surfaces and Interfaces, Thin Films; Polymer Sciences; Physical Chemistry
ISSN
1097-3958
eISSN
1558-9293
D.O.I.
10.1007/s11743-017-1992-2
Publisher site
See Article on Publisher Site

Abstract

Nanoemulsions are small droplet-sized systems that have low surface tension and a small percentage of active material in their composition. In this study, low oil content nanoemulsion systems were developed for the use in enhanced oil recovery (EOR). The experiments were performed on a device capable of simulating petroleum reservoir conditions using sandstone rock cores. Nanoemulsions were obtained from a pre-selected microemulsion system composed of: RNX95 as surfactant, isopropyl alcohol as cosurfactant, kerosene as oil phase, and distilled water as aqueous phase. Different percentages of polyacrylamide were added to the systems obtained to evaluate the influence of viscosity in EOR results. The nanoemulsion droplet sizes ranged from 9.22 to 14.8 nm. Surface tension values were in the range of 33.6–39.7  dyn/cm. A nanoemulsion system with 2.5 wt% surfactant was used in EOR assays. The oil recovery was directly proportional to polymer percentage in the nanoemulsion, ranging from 39.6 to 76.8%. The total oil in the place recovery ranged from 74.5 to 90%.

Journal

Journal of Surfactants and DetergentsSpringer Journals

Published: Jul 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off