Experimental study of low precessing frequencies in the wake of a turbulent annular jet

Experimental study of low precessing frequencies in the wake of a turbulent annular jet This paper investigates the flow structure in the wake behind the centrebody of an annular jet using time-resolved stereoscopic PIV measurements. Although the time-averaged flow field is symmetric, the instantaneous wake is asymmetric. It consists of a central toroidal vortex (CTV), which closes downstream at the stagnation point. This stagnation point lies off-axis and hence the axis of the CTV is tilted with respect to the central axis of the geometry. The CTV precesses around the central axis, corresponding to a Strouhal number of 2.5 × 10−3. The phase averaging technique is used to study this large-scale motion as it can separate the precession from the turbulence in the flow field. It is found that the precession creates a highly three-dimensional flow field and for instance near the stagnation point, up to 45% of the rms velocity fluctuations are attributed to it. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study of low precessing frequencies in the wake of a turbulent annular jet

Loading next page...
 
/lp/springer_journal/experimental-study-of-low-precessing-frequencies-in-the-wake-of-a-df9FJTXimF
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0914-0
Publisher site
See Article on Publisher Site

Abstract

This paper investigates the flow structure in the wake behind the centrebody of an annular jet using time-resolved stereoscopic PIV measurements. Although the time-averaged flow field is symmetric, the instantaneous wake is asymmetric. It consists of a central toroidal vortex (CTV), which closes downstream at the stagnation point. This stagnation point lies off-axis and hence the axis of the CTV is tilted with respect to the central axis of the geometry. The CTV precesses around the central axis, corresponding to a Strouhal number of 2.5 × 10−3. The phase averaging technique is used to study this large-scale motion as it can separate the precession from the turbulence in the flow field. It is found that the precession creates a highly three-dimensional flow field and for instance near the stagnation point, up to 45% of the rms velocity fluctuations are attributed to it.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 30, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off