Experimental study of electrocoalescence of water drops in crude oil using near-infrared camera

Experimental study of electrocoalescence of water drops in crude oil using near-infrared camera Results are presented concerning the influence of an applied electric field on the coalescence of a water droplet with a much bigger water drop, both drops being immersed in a crude oil. This original study of electrocoalescence in crude oil was performed through high-speed optical observations, using a near-infrared camera, of a droplet falling onto a bottom drop, a bipolar square voltage being applied. For low electrical field strength, the electrostatic pressure at the water/oil interface of the merging droplet partly counteracts the capillary forces, which slows down the drop coalescence process. Above threshold field strength, the electric forces drastically affect the dynamics of drop deformation and merging. At a working temperature T = 60 °C, partial coalescence was observed, leaving a daughter drop of size increasing with the applied field. At T = 40 °C, there was an abrupt transition from coalescence to non-coalescence, the top droplet inducing an upward directed nearly conical deformation of the bottom drop. This is attributed to charge exchange between the colliding water drops at each polarity reversal of the applied voltage, thus generating a bouncing-like behaviour at a frequency twice the voltage frequency. The charge exchange occurs through a very thin filament interconnecting the drops during a short time and presumably generated by interface instability. Under strong enough applied field, there was also formation of a very fine mist around the zone of drop quasi contact; this mist is ascribed to the break-up of the transitory very thin ligament bridging the drops. Some explanations and considerations are proposed for the various observations; in particular, it is proposed that the contrast between the transitions to partial coalescence (at 60 °C) and to non-coalescence (at 40 °C) arises from geometrical differences in the temporary small bridge interconnecting the drops. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study of electrocoalescence of water drops in crude oil using near-infrared camera

Loading next page...
 
/lp/springer_journal/experimental-study-of-electrocoalescence-of-water-drops-in-crude-oil-QeuAledDiQ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1990-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial