Experimental study of convective heat transfer from a rotating finned tube in transverse air flow

Experimental study of convective heat transfer from a rotating finned tube in transverse air flow  The convective heat transfer from fins to air has been evaluated using rotating annular fins subjected to an air flow parallel to the fins. The fin cooling is studied using infrared thermography. The thermal balance in a fin during its cooling process allows us to obtain the heat transfer coefficient from the temperature time evolution of the fin. Moreover, Particle Image Velocimetry allows us to obtain the flow field in the mid-plane between two fins. The influence of the fin spacing on the convective heat transfer is studied for various velocities of the superposed air flow and various fin rotational speeds. These tests were carried out for air flow Reynolds numbers (based on the shaft diameter and the velocity of the superposed air flow) between 2550 and 18200 and rotational Reynolds numbers (based on the shaft diameter and the peripheral speed) between 800 and 2.9 × 104, for different fin spacings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental study of convective heat transfer from a rotating finned tube in transverse air flow

Loading next page...
 
/lp/springer_journal/experimental-study-of-convective-heat-transfer-from-a-rotating-finned-9TZhJCkL22
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050429
Publisher site
See Article on Publisher Site

Abstract

 The convective heat transfer from fins to air has been evaluated using rotating annular fins subjected to an air flow parallel to the fins. The fin cooling is studied using infrared thermography. The thermal balance in a fin during its cooling process allows us to obtain the heat transfer coefficient from the temperature time evolution of the fin. Moreover, Particle Image Velocimetry allows us to obtain the flow field in the mid-plane between two fins. The influence of the fin spacing on the convective heat transfer is studied for various velocities of the superposed air flow and various fin rotational speeds. These tests were carried out for air flow Reynolds numbers (based on the shaft diameter and the velocity of the superposed air flow) between 2550 and 18200 and rotational Reynolds numbers (based on the shaft diameter and the peripheral speed) between 800 and 2.9 × 104, for different fin spacings.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 5, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off