Experimental study of a closed system in the sodium chlorite–iodine–ethyl acetoacetate oscillation reaction by UV–Vis and online FTIR spectrophotometric method

Experimental study of a closed system in the sodium chlorite–iodine–ethyl acetoacetate... The sodium chlorite–iodine–ethyl acetoacetate (EAA) chemical oscillatory reaction system was studied by UV–Vis and online FTIR spectrophotometric method. The oscillation phenomenon does not occur as long as the reactants are mixed. There is a pre-oscillatory or induction period. The amplitude is small at the beginning stage and then increases with reaction time. Finally, the oscillation ceases suddenly. The amplitude and the number of oscillations are associated with the initial concentration of sodium chlorite, iodine, EAA and sulfuric acid. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations on the oscillation stage were obtained. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Experimental study of a closed system in the sodium chlorite–iodine–ethyl acetoacetate oscillation reaction by UV–Vis and online FTIR spectrophotometric method

Loading next page...
 
/lp/springer_journal/experimental-study-of-a-closed-system-in-the-sodium-chlorite-iodine-ydpKKS1GM0
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0318-7
Publisher site
See Article on Publisher Site

Abstract

The sodium chlorite–iodine–ethyl acetoacetate (EAA) chemical oscillatory reaction system was studied by UV–Vis and online FTIR spectrophotometric method. The oscillation phenomenon does not occur as long as the reactants are mixed. There is a pre-oscillatory or induction period. The amplitude is small at the beginning stage and then increases with reaction time. Finally, the oscillation ceases suddenly. The amplitude and the number of oscillations are associated with the initial concentration of sodium chlorite, iodine, EAA and sulfuric acid. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations on the oscillation stage were obtained. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: May 8, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off