Experimental Simulation of Spin Squeezing by Nuclear Magnetic Resonance

Experimental Simulation of Spin Squeezing by Nuclear Magnetic Resonance We report on the experimental simulation of spin squeezing using a liquid-state nuclear magnetic resonance (NMR) quantum information processor. This was done by identifying the energy levels within the symmetric subspace of a system of n spin-1/2 nuclei with the energy levels of the simulated spin-(n/2) system. The results obtained for our simulations of spin-1 and spin-3/2 systems are consistent with earlier theoretical studies of spin squeezing, and illustrate interesting relations between the degree of squeezing and the strength of the correlations among the underlying spin-1/2 particles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Experimental Simulation of Spin Squeezing by Nuclear Magnetic Resonance

Loading next page...
 
/lp/springer_journal/experimental-simulation-of-spin-squeezing-by-nuclear-magnetic-BQGjuEJob1
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by Springer Science+Business Media, Inc.
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/B:QINP.0000042202.87144.cb
Publisher site
See Article on Publisher Site

Abstract

We report on the experimental simulation of spin squeezing using a liquid-state nuclear magnetic resonance (NMR) quantum information processor. This was done by identifying the energy levels within the symmetric subspace of a system of n spin-1/2 nuclei with the energy levels of the simulated spin-(n/2) system. The results obtained for our simulations of spin-1 and spin-3/2 systems are consistent with earlier theoretical studies of spin squeezing, and illustrate interesting relations between the degree of squeezing and the strength of the correlations among the underlying spin-1/2 particles.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off