Experimental laminar Rayleigh-Bénard convection in a cubical cavity at moderate Rayleigh and Prandtl numbers

Experimental laminar Rayleigh-Bénard convection in a cubical cavity at moderate Rayleigh and... Rayleigh-Bénard convection in a cubical cavity with adiabatic or conductive sidewalls is experimentally analyzed at moderate Rayleigh numbers (Ra ≤ 8 × 104) using silicone oil (Pr=130) as the convecting fluid. Under these conditions the flow is steady and laminar. Three single-roll-type structures and an unstable toroidal roll have been observed inside the cavity with nearly adiabatic sidewalls. The sequence from the conductive state consists of a toroidal roll that evolves to a diagonally oriented single roll with increasing Rayleigh number. This diagonal roll, which is stabilized by the effect of the small but finite conductivity of the walls, shifts its axis of rotation towards to two opposite walls, and back to the diagonal orientation to allow for the increase in circulation that occurs as the Rayleigh number is further increased. Conduction at the sidewalls modifies this sequence in the sense that the two initial single rolls finally evolve into a four-roll structure. Once formed, this four-roll structure remains stable when decreasing the Rayleigh number until the initial single diagonally oriented roll is again recovered. The topology and the velocity fields of all structures, characterized with visualization and particle image velocimetry, respectively, are in good agreement with numerical results reported previously for the cavity with adiabatic walls, as well as with the numerical predictions obtained in the present study for perfectly conducting lateral walls. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental laminar Rayleigh-Bénard convection in a cubical cavity at moderate Rayleigh and Prandtl numbers

Loading next page...
 
/lp/springer_journal/experimental-laminar-rayleigh-b-nard-convection-in-a-cubical-cavity-at-9W5G6KURv0
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480100275
Publisher site
See Article on Publisher Site

Abstract

Rayleigh-Bénard convection in a cubical cavity with adiabatic or conductive sidewalls is experimentally analyzed at moderate Rayleigh numbers (Ra ≤ 8 × 104) using silicone oil (Pr=130) as the convecting fluid. Under these conditions the flow is steady and laminar. Three single-roll-type structures and an unstable toroidal roll have been observed inside the cavity with nearly adiabatic sidewalls. The sequence from the conductive state consists of a toroidal roll that evolves to a diagonally oriented single roll with increasing Rayleigh number. This diagonal roll, which is stabilized by the effect of the small but finite conductivity of the walls, shifts its axis of rotation towards to two opposite walls, and back to the diagonal orientation to allow for the increase in circulation that occurs as the Rayleigh number is further increased. Conduction at the sidewalls modifies this sequence in the sense that the two initial single rolls finally evolve into a four-roll structure. Once formed, this four-roll structure remains stable when decreasing the Rayleigh number until the initial single diagonally oriented roll is again recovered. The topology and the velocity fields of all structures, characterized with visualization and particle image velocimetry, respectively, are in good agreement with numerical results reported previously for the cavity with adiabatic walls, as well as with the numerical predictions obtained in the present study for perfectly conducting lateral walls.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off