Experimental investigations and large-eddy simulation of low-swirl combustion in a lean premixed multi-nozzle combustor

Experimental investigations and large-eddy simulation of low-swirl combustion in a lean premixed... This paper presents laser diagnostic experiments and large-eddy simulations (LES) of low-swirl lean premixed methane/air flames in a multi-nozzle combustor including five nozzles with the same structure. OH planar laser-induced fluorescence is used to observe flame shapes and identify main reaction zones. NOx and CO emissions are also recorded during the experiment. The flows and flames are studied at different equivalence ratios ranging from 0.5 to 0.8, while the bulk inlet velocity is fixed at 6.2 m/s. Results show that the neighboring swirling flows interact with each other, generating a highly turbulent interacting zone where intensive reactions take place. The flame is stabilized above the nozzle rim, and its liftoff height decreases with increasing equivalence ratio. The center flow is confined and distorted by the neighboring flows, resulting in instabilities of the center flame. Mean OH radical images reveal that the center nozzle flame is extinguished when equivalence ratio is equals to 0.5, which is successfully predicted by LES. In addition, NOx emissions show log-linear dependency on the adiabatic flame temperature, while the CO emissions remain lower than 10 ppm. NOx emissions for multi-nozzle flame are less sensitive to the flame temperature than that for single nozzle. These results demonstrate that the low-swirl multi-nozzle concept is a promising solution to achieve stable combustion with ultra-low emissions in gas turbines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental investigations and large-eddy simulation of low-swirl combustion in a lean premixed multi-nozzle combustor

Loading next page...
 
/lp/springer_journal/experimental-investigations-and-large-eddy-simulation-of-low-swirl-0kXEQxp4hM
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1899-5
Publisher site
See Article on Publisher Site

Abstract

This paper presents laser diagnostic experiments and large-eddy simulations (LES) of low-swirl lean premixed methane/air flames in a multi-nozzle combustor including five nozzles with the same structure. OH planar laser-induced fluorescence is used to observe flame shapes and identify main reaction zones. NOx and CO emissions are also recorded during the experiment. The flows and flames are studied at different equivalence ratios ranging from 0.5 to 0.8, while the bulk inlet velocity is fixed at 6.2 m/s. Results show that the neighboring swirling flows interact with each other, generating a highly turbulent interacting zone where intensive reactions take place. The flame is stabilized above the nozzle rim, and its liftoff height decreases with increasing equivalence ratio. The center flow is confined and distorted by the neighboring flows, resulting in instabilities of the center flame. Mean OH radical images reveal that the center nozzle flame is extinguished when equivalence ratio is equals to 0.5, which is successfully predicted by LES. In addition, NOx emissions show log-linear dependency on the adiabatic flame temperature, while the CO emissions remain lower than 10 ppm. NOx emissions for multi-nozzle flame are less sensitive to the flame temperature than that for single nozzle. These results demonstrate that the low-swirl multi-nozzle concept is a promising solution to achieve stable combustion with ultra-low emissions in gas turbines.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off