Experimental investigations and large-eddy simulation of low-swirl combustion in a lean premixed multi-nozzle combustor

Experimental investigations and large-eddy simulation of low-swirl combustion in a lean premixed... This paper presents laser diagnostic experiments and large-eddy simulations (LES) of low-swirl lean premixed methane/air flames in a multi-nozzle combustor including five nozzles with the same structure. OH planar laser-induced fluorescence is used to observe flame shapes and identify main reaction zones. NOx and CO emissions are also recorded during the experiment. The flows and flames are studied at different equivalence ratios ranging from 0.5 to 0.8, while the bulk inlet velocity is fixed at 6.2 m/s. Results show that the neighboring swirling flows interact with each other, generating a highly turbulent interacting zone where intensive reactions take place. The flame is stabilized above the nozzle rim, and its liftoff height decreases with increasing equivalence ratio. The center flow is confined and distorted by the neighboring flows, resulting in instabilities of the center flame. Mean OH radical images reveal that the center nozzle flame is extinguished when equivalence ratio is equals to 0.5, which is successfully predicted by LES. In addition, NOx emissions show log-linear dependency on the adiabatic flame temperature, while the CO emissions remain lower than 10 ppm. NOx emissions for multi-nozzle flame are less sensitive to the flame temperature than that for single nozzle. These results demonstrate that the low-swirl multi-nozzle concept is a promising solution to achieve stable combustion with ultra-low emissions in gas turbines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental investigations and large-eddy simulation of low-swirl combustion in a lean premixed multi-nozzle combustor

Loading next page...
 
/lp/springer_journal/experimental-investigations-and-large-eddy-simulation-of-low-swirl-0kXEQxp4hM
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1899-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial