Experimental investigation of vortex rings impinging on inclined surfaces

Experimental investigation of vortex rings impinging on inclined surfaces Vortex–ring interactions with oblique boundaries were studied experimentally to determine the effects of plate angle on the generation of secondary vorticity, the evolution of the primary vorticity and secondary vorticity as they interact near the boundary, and the associated energy dissipation. Vortex rings were generated using a mechanical piston-cylinder vortex ring generator at jet Reynolds numbers 2,000–4,000 and stroke length to piston diameter ratios (L/D) in the range 0.75–2.0. The plate angle relative to the initial axis of the vortex ring ranged from 3 to 60°. Flow analysis was performed using planar laser-induced fluorescence (PLIF), digital particle image velocimetry (DPIV), and defocusing digital particle tracking velocimetry (DDPTV). Results showed the generation of secondary vorticity at the plate and its subsequent ejection into the fluid. The trajectories of the centers of circulation showed a maximum ejection angle of the secondary vorticity occurring for an angle of incidence of 10°. At lower incidence angles (<20°), the lower portion of the ring, which interacted with the plate first, played an important role in generation of the secondary vorticity and is a key reason for the maximum ejection angle for the secondary vorticity occurring at an incidence angle of 10°. Higher Reynolds number vortex rings resulted in more rapid destabilization of the flow. The three-dimensional DDPTV results showed an arc of secondary vorticity and secondary flow along the sides of the primary vortex ring as it collided with the boundary. Computation of the moments and products of kinetic energy and vorticity magnitude about the centroid of each vortex ring showed increasing asymmetry in the flow as the vortex interaction with the boundary evolved and more rapid dissipation of kinetic energy for higher incidence angles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental investigation of vortex rings impinging on inclined surfaces

Loading next page...
 
/lp/springer_journal/experimental-investigation-of-vortex-rings-impinging-on-inclined-XKtLB2Wb0a
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1135-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial