Experimental investigation of the fluid–structure interaction in an elastic 180° curved vessel at laminar oscillating flow

Experimental investigation of the fluid–structure interaction in an elastic 180° curved vessel... Fluid–structure interaction phenomena are extremely important when laminar flows through elastic vessels such as in biomedical flow problems are considered. In general, such elastic vessels are curved which is why an elastic 180° bend at a curvature ratio $$\delta = D/D_{\rm C} = 0.\bar{2}$$ δ = D / D C = 0 . 2 ¯ defines the reference geometry in this study. It is the purpose of this study to compare the results with the steady flow through a 180° rigid pipe bend and to quantify the impact of the fluid–structure interaction on the overall flow pattern and the vessel deformation at oscillating fully developed entrance flow. The findings comprise velocity, pressure, and structure deformation measurements. The vessel dilatation amplitude was varied between 3.75 % and 7 % of the vessel diameter at Dean De and Womersley number Wo ranges of $$327\,\le\,De\,\le\,350$$ 327 ≤ D e ≤ 350 and $$7\,\le\,Wo\,\le\,8.$$ 7 ≤ W o ≤ 8 . The flow is investigated by time-resolved stereoscopic particle-image velocimetry in five radial cross sections located in the elastic 180° bend and in the inlet pipes. The unsteady static vessel pressure is measured synchronously at these cross sections. The comparison of the steady with the unsteady flow field shows a strong change in the axial and secondary velocity distributions at periods of transition between the centrifugal forces and the unsteady inertia forces dominated regimes. These changes are characterized by asymmetric fluctuations of the centers of the counter-rotating vortex pair. The investigation of the impact of the structure deformation amplitude on these fluctuations reveals a significant attenuation at high deformation amplitudes. The spatial motion of the elastic vessel due to the forces applied by the flow exhibits amplitudes up to 15 % of the vessel diameter. Considering the fluid–structure interaction, an amplification of the volume flux amplitude by a factor of 2.1 at the vessel outlet and phase lags up to 30° occur. The static pressure distribution is characterized by a pronounced asymmetry between forward and backward flow with a 40 % higher peak magnitude at backward flow and phase lags of 35°. The results evidence that a strong distortion of the velocity distribution in the bend, which is caused by the oscillating nature of the flow, is reduced as a result of the fluid–structure interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental investigation of the fluid–structure interaction in an elastic 180° curved vessel at laminar oscillating flow

Loading next page...
 
/lp/springer_journal/experimental-investigation-of-the-fluid-structure-interaction-in-an-FnV8hrWRyp
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1816-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial