Experimental investigation of secondary reactions of intermediates in delayed coking

Experimental investigation of secondary reactions of intermediates in delayed coking We report an experimental investigation of secondary reactions of intermediates in delayed coking. Thermal cracking reactions of intermediates, for example coker naphtha (C5 ~180 °C), light coker gas oil (LCGO, 180–350 °C), middle coker gas oil (MCGO, 350–440 °C), and heavy coker gas oil (HCGO, >440 °C), were investigated. The results reveal that cracking of coker naphtha and LCGO is low under these experimental conditions. Thermal cracking MCGO exceeds that of LCGO. Among all the intermediates, thermal cracking is greatest for HCGO. The secondary reactions of HCGO produce not only gas and liquid products, but also coke. This increase in the yields of gas and coke is attributed to secondary reactions of HCGO and MCGO. Inhibition of the secondary reactions of intermediates results in a greater yield of liquid. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Experimental investigation of secondary reactions of intermediates in delayed coking

Loading next page...
 
/lp/springer_journal/experimental-investigation-of-secondary-reactions-of-intermediates-in-DG7SJ26wNJ
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0546-5
Publisher site
See Article on Publisher Site

Abstract

We report an experimental investigation of secondary reactions of intermediates in delayed coking. Thermal cracking reactions of intermediates, for example coker naphtha (C5 ~180 °C), light coker gas oil (LCGO, 180–350 °C), middle coker gas oil (MCGO, 350–440 °C), and heavy coker gas oil (HCGO, >440 °C), were investigated. The results reveal that cracking of coker naphtha and LCGO is low under these experimental conditions. Thermal cracking MCGO exceeds that of LCGO. Among all the intermediates, thermal cracking is greatest for HCGO. The secondary reactions of HCGO produce not only gas and liquid products, but also coke. This increase in the yields of gas and coke is attributed to secondary reactions of HCGO and MCGO. Inhibition of the secondary reactions of intermediates results in a greater yield of liquid.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 25, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off