Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning

Experimental investigation of machining characteristics and chatter stability for Hastelloy-X... Ultrasonic-assisted machining is a machining operation based on the intermittent cutting of material which is obtained through vibrations generated by an ultrasonic system. This method utilizes low-amplitude vibrations with high frequency to prevent continuous contact between a cutting tool and a workpiece. Hot machining is another method for machining materials which are difficult to cut. The basic principle of this method is that the surface of the workpiece is heated to a specific temperature below the recrystallization temperature of the material. This heating operation can be applied before or during the machining process. Both of these operations improve machining operations in terms of workpiece-cutting tool characteristics. In this study, a novel hybrid machining method called hot ultrasonic-assisted turning (HUAT) is proposed for the machinability of Hastelloy-X material. This new technique combines ultrasonic-assisted turning (UAT) and hot turning methods to take advantage of both machining methods in terms of machining characteristics, such as surface roughness, stable cutting depths, and cutting tool temperature. In order to observe the effect of the HUAT method, Hastelloy-X alloy was selected as the workpiece. Experiments on conventional turning (CT), UAT, and HUAT operations were carried out for Hastelloy-X alloy, changing the cutting speed and cutting tool overhang lengths. Chip morphology was also observed. In addition, modal and sound tests were performed to investigate the modal and stability characteristics of the machining. The analysis of variance (ANOVA) method was performed to find the effect of the cutting speed, tool overhang length, and machining techniques (CT, UAT, HUAT) on surface roughness, stable cutting depths, and cutting tool temperature. The results show both ultrasonic vibration and heat improve the machining of Hastelloy-X. A decrease in surface roughness and an increase in stable cutting depths were observed, and higher cutting tool temperatures were obtained in UAT and HUAT compared to CT. According to the ANOVA results, tool overhang length, cutting speed, and machining techniques were effective parameters for surface roughness and stable cutting depths at a 1% significance level (p ≤ 0.01). In addition, cutting speed and machining techniques have an influence on cutting tool temperature at a 1% significance level (p ≤ 0.01). During chip analysis, serrated chips were observed in UAT and HUAT. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning

Loading next page...
 
/lp/springer_journal/experimental-investigation-of-machining-characteristics-and-chatter-DogozbkiCJ
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1153-9
Publisher site
See Article on Publisher Site

Abstract

Ultrasonic-assisted machining is a machining operation based on the intermittent cutting of material which is obtained through vibrations generated by an ultrasonic system. This method utilizes low-amplitude vibrations with high frequency to prevent continuous contact between a cutting tool and a workpiece. Hot machining is another method for machining materials which are difficult to cut. The basic principle of this method is that the surface of the workpiece is heated to a specific temperature below the recrystallization temperature of the material. This heating operation can be applied before or during the machining process. Both of these operations improve machining operations in terms of workpiece-cutting tool characteristics. In this study, a novel hybrid machining method called hot ultrasonic-assisted turning (HUAT) is proposed for the machinability of Hastelloy-X material. This new technique combines ultrasonic-assisted turning (UAT) and hot turning methods to take advantage of both machining methods in terms of machining characteristics, such as surface roughness, stable cutting depths, and cutting tool temperature. In order to observe the effect of the HUAT method, Hastelloy-X alloy was selected as the workpiece. Experiments on conventional turning (CT), UAT, and HUAT operations were carried out for Hastelloy-X alloy, changing the cutting speed and cutting tool overhang lengths. Chip morphology was also observed. In addition, modal and sound tests were performed to investigate the modal and stability characteristics of the machining. The analysis of variance (ANOVA) method was performed to find the effect of the cutting speed, tool overhang length, and machining techniques (CT, UAT, HUAT) on surface roughness, stable cutting depths, and cutting tool temperature. The results show both ultrasonic vibration and heat improve the machining of Hastelloy-X. A decrease in surface roughness and an increase in stable cutting depths were observed, and higher cutting tool temperatures were obtained in UAT and HUAT compared to CT. According to the ANOVA results, tool overhang length, cutting speed, and machining techniques were effective parameters for surface roughness and stable cutting depths at a 1% significance level (p ≤ 0.01). In addition, cutting speed and machining techniques have an influence on cutting tool temperature at a 1% significance level (p ≤ 0.01). During chip analysis, serrated chips were observed in UAT and HUAT.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Oct 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off