Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces

Experimental investigation of inclined liquid water jet flow onto vertically located... In this study, the behaviour of an inclined water jet, which is impinged onto hydrophobic and superhydrophobic surfaces, has been investigated experimentally. Water jet was impinged with different inclination angles (15°–45°) onto five different hydrophobic surfaces made of rough polymer, which were held vertically. The water contact angles on these surfaces were measured as 102°, 112°, 123°, 145° and 167° showing that the last surface was superhydrophobic. Two different nozzles with 1.75 and 4 mm in diameters were used to create the water jet. Water jet velocity was within the range of 0.5–5 m/s, thus the Weber number varied from 5 to 650 and Reynolds number from 500 to 8,000 during the experiments. Hydrophobic surfaces reflected the liquid jet depending on the surface contact angle, jet inclination angle and the Weber number. The variation of the reflection angle with the Weber number showed a maximum value for a constant jet angle. The maximum value of the reflection angle was nearly equal to half of the jet angle. It was determined that the viscous drag decreases as the contact angle of the hydrophobic surface increases. The drag force on the wall is reduced dramatically with superhydrophobic surfaces. The amount of reduction of the average shear stress on the wall was about 40%, when the contact angle of the surface was increased from 145° to 167°. The area of the spreading water layer decreased as the contact angle of the surface increased and as the jet inclination angle, Weber number and Reynolds number decreased. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces

Loading next page...
 
/lp/springer_journal/experimental-investigation-of-inclined-liquid-water-jet-flow-onto-urb0J009M0
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0864-6
Publisher site
See Article on Publisher Site

Abstract

In this study, the behaviour of an inclined water jet, which is impinged onto hydrophobic and superhydrophobic surfaces, has been investigated experimentally. Water jet was impinged with different inclination angles (15°–45°) onto five different hydrophobic surfaces made of rough polymer, which were held vertically. The water contact angles on these surfaces were measured as 102°, 112°, 123°, 145° and 167° showing that the last surface was superhydrophobic. Two different nozzles with 1.75 and 4 mm in diameters were used to create the water jet. Water jet velocity was within the range of 0.5–5 m/s, thus the Weber number varied from 5 to 650 and Reynolds number from 500 to 8,000 during the experiments. Hydrophobic surfaces reflected the liquid jet depending on the surface contact angle, jet inclination angle and the Weber number. The variation of the reflection angle with the Weber number showed a maximum value for a constant jet angle. The maximum value of the reflection angle was nearly equal to half of the jet angle. It was determined that the viscous drag decreases as the contact angle of the hydrophobic surface increases. The drag force on the wall is reduced dramatically with superhydrophobic surfaces. The amount of reduction of the average shear stress on the wall was about 40%, when the contact angle of the surface was increased from 145° to 167°. The area of the spreading water layer decreased as the contact angle of the surface increased and as the jet inclination angle, Weber number and Reynolds number decreased.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off