Experimental investigation and modelling of WEDM process for machining nano-structured hardfacing material

Experimental investigation and modelling of WEDM process for machining nano-structured hardfacing... In recent years, nano-structured hardfacing alloy constituting fine carbides, borides and boro-carbides have become pioneered in modern manufacturing industries due to their superior properties (excellent hardness, toughness and wear resistance) even at elevated temperatures. A nano-structured hardfacing alloy component was produced using manual metal arc welding process for making turning tool insert. The present paper investigates the effect of wire electrical discharge machining (WEDM) parameters such as discharge pulse time, discharge stop time, servo voltage, wire tension and wire feed rate on machining performances viz. material removal rate, machining time and surface roughness after proof-machining of welded nano-structured hardfacing material. Taguchi’s (L25) orthogonal array has been used to perform the experimental runs using conventional brass wire and zinc-coated wire electrodes, respectively. A combination of Taguchi’s robust design concept with principal component analysis has been applied to optimize the process parameters. For brass wire, the optimal settings of the input process parameters corresponds to discharge pulse time 0.45 µs, discharge stop time 8 µs, servo voltage 35 V, wire tension 800 g and wire feed rate 7 m/min, respectively. Similarly, for zinc-coated brass wire, the corresponding settings are discharge pulse time 0.5 µs, discharge stop time 11 µs, servo voltage 41 V, wire tension 600 g and wire feed rate 7 m/min. This paper also establishes the inter-relationships of various WEDM machining parameters and performances by employing response surface methodology-based approach. A confirmation test has also been carried out with the optimal process parameters to conform to the experimental result. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Experimental investigation and modelling of WEDM process for machining nano-structured hardfacing material

Loading next page...
 
/lp/springer_journal/experimental-investigation-and-modelling-of-wedm-process-for-machining-XsF95ZZjxg
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-016-0608-5
Publisher site
See Article on Publisher Site

Abstract

In recent years, nano-structured hardfacing alloy constituting fine carbides, borides and boro-carbides have become pioneered in modern manufacturing industries due to their superior properties (excellent hardness, toughness and wear resistance) even at elevated temperatures. A nano-structured hardfacing alloy component was produced using manual metal arc welding process for making turning tool insert. The present paper investigates the effect of wire electrical discharge machining (WEDM) parameters such as discharge pulse time, discharge stop time, servo voltage, wire tension and wire feed rate on machining performances viz. material removal rate, machining time and surface roughness after proof-machining of welded nano-structured hardfacing material. Taguchi’s (L25) orthogonal array has been used to perform the experimental runs using conventional brass wire and zinc-coated wire electrodes, respectively. A combination of Taguchi’s robust design concept with principal component analysis has been applied to optimize the process parameters. For brass wire, the optimal settings of the input process parameters corresponds to discharge pulse time 0.45 µs, discharge stop time 8 µs, servo voltage 35 V, wire tension 800 g and wire feed rate 7 m/min, respectively. Similarly, for zinc-coated brass wire, the corresponding settings are discharge pulse time 0.5 µs, discharge stop time 11 µs, servo voltage 41 V, wire tension 600 g and wire feed rate 7 m/min. This paper also establishes the inter-relationships of various WEDM machining parameters and performances by employing response surface methodology-based approach. A confirmation test has also been carried out with the optimal process parameters to conform to the experimental result.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: Jul 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off