Experimental implementation of a NMR entanglement witness

Experimental implementation of a NMR entanglement witness Entanglement witnesses (EW) allow the detection of entanglement in a quantum system, from the measurement of some few observables. They do not require the complete determination of the quantum state, which is regarded as a main advantage. On this paper it is experimentally analyzed an entanglement witness recently proposed in the context of Nuclear Magnetic Resonance experiments to test it in some Bell-diagonal states. We also propose some optimal entanglement witness for Bell-diagonal states. The efficiency of the two types of EW’s are compared to a measure of entanglement with tomographic cost, the generalized robustness of entanglement. It is used a GRAPE algorithm to produce an entangled state which is out of the detection region of the EW for Bell-diagonal states. Upon relaxation, the results show that there is a region in which both EW fails, whereas the generalized robustness still shows entanglement, but with the entanglement witness proposed here with a better performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Experimental implementation of a NMR entanglement witness

Loading next page...
 
/lp/springer_journal/experimental-implementation-of-a-nmr-entanglement-witness-oEWXjjSN0Q
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0341-z
Publisher site
See Article on Publisher Site

Abstract

Entanglement witnesses (EW) allow the detection of entanglement in a quantum system, from the measurement of some few observables. They do not require the complete determination of the quantum state, which is regarded as a main advantage. On this paper it is experimentally analyzed an entanglement witness recently proposed in the context of Nuclear Magnetic Resonance experiments to test it in some Bell-diagonal states. We also propose some optimal entanglement witness for Bell-diagonal states. The efficiency of the two types of EW’s are compared to a measure of entanglement with tomographic cost, the generalized robustness of entanglement. It is used a GRAPE algorithm to produce an entangled state which is out of the detection region of the EW for Bell-diagonal states. Upon relaxation, the results show that there is a region in which both EW fails, whereas the generalized robustness still shows entanglement, but with the entanglement witness proposed here with a better performance.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 13, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off