Experimental characterization of the initial zone of an annular jet with a very large diameter ratio

Experimental characterization of the initial zone of an annular jet with a very large diameter ratio This article presents an experimental investigation of a large diameter ratio annular air jet by particle image velocimetry, Laser Doppler Anemometry, hot-wire anemometry and time-resolved tomography. Annular jets consist of a round nozzle with an obstacle placed in its center. These jets are thus defined by an external and an internal diameter corresponding to the round nozzle lips and the diameter of the obstacle, respectively. The ratio between these two diameters defines the behavior of the flow across a characteristic diameter called diameter ratio. In most industrial applications these jets have large diameter ratios, superior to 0.7. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental characterization of the initial zone of an annular jet with a very large diameter ratio

Loading next page...
 
/lp/springer_journal/experimental-characterization-of-the-initial-zone-of-an-annular-jet-7JDBXoYwdF
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1418-x
Publisher site
See Article on Publisher Site

Abstract

This article presents an experimental investigation of a large diameter ratio annular air jet by particle image velocimetry, Laser Doppler Anemometry, hot-wire anemometry and time-resolved tomography. Annular jets consist of a round nozzle with an obstacle placed in its center. These jets are thus defined by an external and an internal diameter corresponding to the round nozzle lips and the diameter of the obstacle, respectively. The ratio between these two diameters defines the behavior of the flow across a characteristic diameter called diameter ratio. In most industrial applications these jets have large diameter ratios, superior to 0.7.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 8, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off