Experimental and simulation research on micro-milling temperature and cutting deformation of heat-resistance stainless steel

Experimental and simulation research on micro-milling temperature and cutting deformation of... n view of the influence of cutting heat and cutting force on the machining precision of micro-machining, this paper carries out micro-milling temperature measurements and deformation measurement tests based on the theoretical model of temperature field distribution of workpiece and the simulation model of workpiece deformation, providing technical basis for the high-precision machining of precision micro-parts. A theoretical model for the description of the increase in the cutting temperature of the workpiece is established prior to using an inverse evaluation method for solving the heat source intensity iteratively. During the finite element analysis of the distribution of the temperature field and heat distortion, the process of the heat transfer is simplified as a process of applying a series surface heat source to workpiece. Besides, this paper carried on a series of micro-milling experiments, used a fast-response thermocouple which has a property of self-renewal for the measurement of the change of the workpiece temperature, the response time of the applied thermocouple is within the magnitude of microsecond, and then, a high-frequency amplifier and an electric potential acquisition equipment were used to gain the transient temperature in the cutting area; meanwhile, a dynamometer is applied to measure the three-directional forces, and finally, the workpiece deformation would be measured by the Keyence microscope. Through the comparison of the simulated temperature and deformation with the experimental results, the simulation model showed considerable reliability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Experimental and simulation research on micro-milling temperature and cutting deformation of heat-resistance stainless steel

Loading next page...
 
/lp/springer_journal/experimental-and-simulation-research-on-micro-milling-temperature-and-Ao5IZuz0oh
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1091-6
Publisher site
See Article on Publisher Site

Abstract

n view of the influence of cutting heat and cutting force on the machining precision of micro-machining, this paper carries out micro-milling temperature measurements and deformation measurement tests based on the theoretical model of temperature field distribution of workpiece and the simulation model of workpiece deformation, providing technical basis for the high-precision machining of precision micro-parts. A theoretical model for the description of the increase in the cutting temperature of the workpiece is established prior to using an inverse evaluation method for solving the heat source intensity iteratively. During the finite element analysis of the distribution of the temperature field and heat distortion, the process of the heat transfer is simplified as a process of applying a series surface heat source to workpiece. Besides, this paper carried on a series of micro-milling experiments, used a fast-response thermocouple which has a property of self-renewal for the measurement of the change of the workpiece temperature, the response time of the applied thermocouple is within the magnitude of microsecond, and then, a high-frequency amplifier and an electric potential acquisition equipment were used to gain the transient temperature in the cutting area; meanwhile, a dynamometer is applied to measure the three-directional forces, and finally, the workpiece deformation would be measured by the Keyence microscope. Through the comparison of the simulated temperature and deformation with the experimental results, the simulation model showed considerable reliability.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off