Experimental and analytical study on grouted duct connections in precast concrete construction

Experimental and analytical study on grouted duct connections in precast concrete construction Owing to its forgiving tolerances and eliminating the need for welding, grouted dowel in-conduit connections are widely used for connecting various precast concrete elements, for instance in precast wall construction and bridge bent cap systems. Current design recommendations for such a connection treat it similar to a conventional reinforcing bar-in-concrete and do not account for the restraining effect of the duct. In the present study, a series of experimental and analytical approaches have been adopted to explore the disparity between grouted dowel connections and bar-in-concrete. The experimental program consisted of testing twenty-four pull-out specimens under monotonic loads. The main parameters investigated included the embedment length, concrete compressive strength and corrugated duct. Results from the experimental and analytical procedures showed that grouted dowel in-conduit connections behave markedly different from bars in concrete. Different failure mechanisms occurred in the grouted connections due to the confinement effect of the duct. Moreover, an increase in load carrying capacity and ductility of the connections was observed at all embedment lengths, regardless of the concrete compressive strength. Based on the experimental findings, an analytical model for predicting the embedment length of the connection was derived, calibrated and proven to be more accurate than state-of-the-art design procedures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials and Structures Springer Journals

Experimental and analytical study on grouted duct connections in precast concrete construction

Loading next page...
 
/lp/springer_journal/experimental-and-analytical-study-on-grouted-duct-connections-in-0XtgR14rWe
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by RILEM
Subject
Engineering; Structural Mechanics; Materials Science, general; Theoretical and Applied Mechanics; Operating Procedures, Materials Treatment; Civil Engineering; Building Materials
ISSN
1359-5997
eISSN
1871-6873
D.O.I.
10.1617/s11527-017-1056-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial