Experimental analysis of transonic buffet on a 3D swept wing using fast-response pressure-sensitive paint

Experimental analysis of transonic buffet on a 3D swept wing using fast-response... Transonic buffeting phenomena on a three-dimensional swept wing were experimentally analyzed using a fast-response pressure-sensitive paint (PSP). The experiment was conducted using an 80%-scaled NASA Common Research Model in the Japan Aerospace Exploration Agency (JAXA) 2 m × 2 m Transonic Wind Tunnel at a Mach number of 0.85 and a chord Reynolds number of 1.54 × 106. The angle of attack was varied between 2.82° and 6.52°. The calculation of root-mean-square (RMS) pressure fluctuations and spectral analysis were performed on measured unsteady PSP images to analyze the phenomena under off-design buffet conditions. We found that two types of shock behavior exist. The first is a shock oscillation characterized by the presence of “buffet cells” formed at a bump Strouhal number St of 0.3–0.5, which is observed under all off-design conditions. This phenomenon arises at the mid-span wing and is propagated spanwise from inboard to outboard. The other is a large spatial amplitude shock oscillation characterized by low-frequency broadband components at St < 0.1, which appears at higher angles of attack (α ≥ 6.0°) and behaves more like two-dimensional buffet. The transition between these two shock behaviors correlates well with the rapid increase of the wing-root strain fluctuation RMS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental analysis of transonic buffet on a 3D swept wing using fast-response pressure-sensitive paint

Loading next page...
 
/lp/springer_journal/experimental-analysis-of-transonic-buffet-on-a-3d-swept-wing-using-zMxcU6tvIc
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-018-2565-5
Publisher site
See Article on Publisher Site

Abstract

Transonic buffeting phenomena on a three-dimensional swept wing were experimentally analyzed using a fast-response pressure-sensitive paint (PSP). The experiment was conducted using an 80%-scaled NASA Common Research Model in the Japan Aerospace Exploration Agency (JAXA) 2 m × 2 m Transonic Wind Tunnel at a Mach number of 0.85 and a chord Reynolds number of 1.54 × 106. The angle of attack was varied between 2.82° and 6.52°. The calculation of root-mean-square (RMS) pressure fluctuations and spectral analysis were performed on measured unsteady PSP images to analyze the phenomena under off-design buffet conditions. We found that two types of shock behavior exist. The first is a shock oscillation characterized by the presence of “buffet cells” formed at a bump Strouhal number St of 0.3–0.5, which is observed under all off-design conditions. This phenomenon arises at the mid-span wing and is propagated spanwise from inboard to outboard. The other is a large spatial amplitude shock oscillation characterized by low-frequency broadband components at St < 0.1, which appears at higher angles of attack (α ≥ 6.0°) and behaves more like two-dimensional buffet. The transition between these two shock behaviors correlates well with the rapid increase of the wing-root strain fluctuation RMS.

Journal

Experiments in FluidsSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off