Experimental analysis of the flow field over a novel owl based airfoil

Experimental analysis of the flow field over a novel owl based airfoil The aerodynamics of a newly constructed wing model the geometry of which is related to the wing of a barn owl is experimentally investigated. Several barn owl wings are scanned to obtain three-dimensional surface models of natural wings. A rectangular wing model with the general geometry of the barn owl but without any owl-specific structure being the reference case for all subsequent measurements is investigated using pressure tabs, oil flow pattern technique, and particle-image velocimetry. The main flow feature of the clean wing is a transitional separation bubble on the suction side. The size of the bubble depends on the Reynolds number and the angle of attack, whereas the location is mainly influenced by the angle of attack. Next, a second model with a modified surface is considered and its influence on the flow field is analyzed. Applying a velvet onto the suction side drastically reduces the size of this separation at moderate angles of attack and higher Reynolds numbers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental analysis of the flow field over a novel owl based airfoil

Loading next page...
 
/lp/springer_journal/experimental-analysis-of-the-flow-field-over-a-novel-owl-based-airfoil-yIWQgCHsax
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0600-7
Publisher site
See Article on Publisher Site

Abstract

The aerodynamics of a newly constructed wing model the geometry of which is related to the wing of a barn owl is experimentally investigated. Several barn owl wings are scanned to obtain three-dimensional surface models of natural wings. A rectangular wing model with the general geometry of the barn owl but without any owl-specific structure being the reference case for all subsequent measurements is investigated using pressure tabs, oil flow pattern technique, and particle-image velocimetry. The main flow feature of the clean wing is a transitional separation bubble on the suction side. The size of the bubble depends on the Reynolds number and the angle of attack, whereas the location is mainly influenced by the angle of attack. Next, a second model with a modified surface is considered and its influence on the flow field is analyzed. Applying a velvet onto the suction side drastically reduces the size of this separation at moderate angles of attack and higher Reynolds numbers.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 11, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off