Experimental analysis of flashback in lean premixed swirling flames: conditions close to flashback

Experimental analysis of flashback in lean premixed swirling flames: conditions close to flashback Swirling lean premixed flames are of practical relevance due to their potential for low nitric oxide (NOx) emissions. Unfortunately, these flames have various drawbacks. One critical attribute is the possibility for flashback of the reacting flow into the nozzle. Advanced numerical simulations should be able in the future to predict the transition from stable flames to flashback. For a better understanding of the process itself and for validation of numerical simulation a well-documented generic benchmark experiment is needed. This study presents a burner configuration that has already been studied extensively in the past. By minor geometrical adaptations, and via the possibility to vary the swirl intensity in a controlled way, the transition from stable flames to flashback is now accessible to detailed characterisation using advanced laser diagnostics. In a first part of this study the different states of the flame were classified. In the second part, both a stable and a precessing flame very close to flash back were compared in terms of flow and scalar field. The variation of the swirl intensity on the flame is discussed. Because the flame is strongly influenced by its inflow conditions additional velocity measurements inside the nozzle were carried out. This is of special importance for subsequent numerical simulations to match the experimental conditions. The quantitative investigation of the flame during flashback is subjected to consecutive experiments where planar laser diagnostics at high repetition rates will be exploited. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Experimental analysis of flashback in lean premixed swirling flames: conditions close to flashback

Loading next page...
 
/lp/springer_journal/experimental-analysis-of-flashback-in-lean-premixed-swirling-flames-Zo0CuAIfa5
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0327-x
Publisher site
See Article on Publisher Site

Abstract

Swirling lean premixed flames are of practical relevance due to their potential for low nitric oxide (NOx) emissions. Unfortunately, these flames have various drawbacks. One critical attribute is the possibility for flashback of the reacting flow into the nozzle. Advanced numerical simulations should be able in the future to predict the transition from stable flames to flashback. For a better understanding of the process itself and for validation of numerical simulation a well-documented generic benchmark experiment is needed. This study presents a burner configuration that has already been studied extensively in the past. By minor geometrical adaptations, and via the possibility to vary the swirl intensity in a controlled way, the transition from stable flames to flashback is now accessible to detailed characterisation using advanced laser diagnostics. In a first part of this study the different states of the flame were classified. In the second part, both a stable and a precessing flame very close to flash back were compared in terms of flow and scalar field. The variation of the swirl intensity on the flame is discussed. Because the flame is strongly influenced by its inflow conditions additional velocity measurements inside the nozzle were carried out. This is of special importance for subsequent numerical simulations to match the experimental conditions. The quantitative investigation of the flame during flashback is subjected to consecutive experiments where planar laser diagnostics at high repetition rates will be exploited.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 5, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off