Exogenous nitric oxide-mediated GSH-PC synthesis pathway in tomato under copper stress

Exogenous nitric oxide-mediated GSH-PC synthesis pathway in tomato under copper stress Nitric oxide (NO) is a bioactive molecule that is extensively used at various biotic and abiotic stresses. This study investigated the law governing the variation of related enzymatic activity and metabolites in exogenous NO-mediated GSH-PC synthesis pathway in tomato solution culture subjected to copper stress. Results demonstrated that relative to control copper stress was more effective in the activation of γ-ECS and GS in tomato. Moreover, sharp increases in root GSH and PCs were observed, which keep upward as the process continued. Moreover, adding exogenous SNP (NO donor) can further improve γ-ECS and GS activities in tomato roots and facilitate the synthesis of GSH and PCs, thereby enhancing its peroxide removal ability, chelating excessive Cu2+, and reducing its biotoxicity. The GSH-PC metabolism in the tomato leaves lagged behind that in the roots to a certain extent. Although exogenous GSH synthesis inhibitor BSO inhibited γ-ECS activity in tomato roots, as well as GSH and PC syntheses, adding SNP can counteract this effect by lessening the influence to the PCs in leaves. Under copper stress, exogenous NO may stimulate a signaling mechanism and reduce the biotoxicity and oxidative damage caused by excessive Cu2+ through activating or enhancing the enzymatic and non-enzymatic systems in the GSH-PC synthesis pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Exogenous nitric oxide-mediated GSH-PC synthesis pathway in tomato under copper stress

Loading next page...
 
/lp/springer_journal/exogenous-nitric-oxide-mediated-gsh-pc-synthesis-pathway-in-tomato-HN6a1DI3xo
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715030188
Publisher site
See Article on Publisher Site

Abstract

Nitric oxide (NO) is a bioactive molecule that is extensively used at various biotic and abiotic stresses. This study investigated the law governing the variation of related enzymatic activity and metabolites in exogenous NO-mediated GSH-PC synthesis pathway in tomato solution culture subjected to copper stress. Results demonstrated that relative to control copper stress was more effective in the activation of γ-ECS and GS in tomato. Moreover, sharp increases in root GSH and PCs were observed, which keep upward as the process continued. Moreover, adding exogenous SNP (NO donor) can further improve γ-ECS and GS activities in tomato roots and facilitate the synthesis of GSH and PCs, thereby enhancing its peroxide removal ability, chelating excessive Cu2+, and reducing its biotoxicity. The GSH-PC metabolism in the tomato leaves lagged behind that in the roots to a certain extent. Although exogenous GSH synthesis inhibitor BSO inhibited γ-ECS activity in tomato roots, as well as GSH and PC syntheses, adding SNP can counteract this effect by lessening the influence to the PCs in leaves. Under copper stress, exogenous NO may stimulate a signaling mechanism and reduce the biotoxicity and oxidative damage caused by excessive Cu2+ through activating or enhancing the enzymatic and non-enzymatic systems in the GSH-PC synthesis pathway.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 29, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off