Exocytosis in plants

Exocytosis in plants Exocytosis is the final event in the secretory pathway and requires the fusion of the secretory vesicle membrane with the plasma membrane. It results in the release to the outside of vesicle cargo from the cell interior and also the delivery of vesicle membrane and proteins to the plasma membrane. An electrophysiological assay that measures changes in membrane capacitance has recently been used to monitor exocytosis in plants. This complements information derived from earlier light and electron microscope studies, and allows both transient and irreversible fusion of single exocytotic vesicles to be followed with high resolution in protoplasts. It also provides a tool to investigate bulk exocytotic activity in single protoplasts under the influence of cytoplasmic modulators. This research highlights the role of intracellular Ca2+, GTP and pressure in the control of exocytosis in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Exocytosis in plants

Loading next page...
 
/lp/springer_journal/exocytosis-in-plants-vhrSJC6ESk
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006038122009
Publisher site
See Article on Publisher Site

Abstract

Exocytosis is the final event in the secretory pathway and requires the fusion of the secretory vesicle membrane with the plasma membrane. It results in the release to the outside of vesicle cargo from the cell interior and also the delivery of vesicle membrane and proteins to the plasma membrane. An electrophysiological assay that measures changes in membrane capacitance has recently been used to monitor exocytosis in plants. This complements information derived from earlier light and electron microscope studies, and allows both transient and irreversible fusion of single exocytotic vesicles to be followed with high resolution in protoplasts. It also provides a tool to investigate bulk exocytotic activity in single protoplasts under the influence of cytoplasmic modulators. This research highlights the role of intracellular Ca2+, GTP and pressure in the control of exocytosis in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off