exma: an X-linked insertional mutation that disrupts forebrain and eye development

exma: an X-linked insertional mutation that disrupts forebrain and eye development Formation of the neural tube plays a primary role in establishing the body plan of the vertebrate embryo. Here we describe the phenotype and physical mapping of a highly penetrant X-linked male-lethal murine mutation, exma (exencephaly, microphthalmia/anophthalmia), that specifically disrupts development of the rostral neural tube and eye. The mutation arose from the random insertion of a transgene into the mouse X Chromosome (Chr). Eighty-three percent of transgenic male embryos display an open, disorganized forebrain and lack optic vesicles. No transgenic males survive beyond birth. Hemizygous females show a variable phenotype, including reduced viability and occasional exencephaly and/or microphthalmia. Altered or reduced expression patterns of Otx2, Pax6, Six3, and Mrx, known markers of early forebrain and eye development, confirmed the highly disorganized structure of the forebrain and lack of eye development in affected exma male embryos. Physical mapping of the transgene by FISH localized a single insertion site to the interval between Dmd and Zfx on the X Chr. A 1-Mb contig of BAC clones was assembled by using sequences flanking the transgene and revealed that the insertion lies close to Pola1 and Arx, a gene encoding a highly conserved homeobox protein known to be expressed in the developing forebrain of the mouse. Data from Southern blots of normal and transgenic DNA demonstrated that a large segment of DNA encompassing Arx and including part of Pola1 was duplicated as a result of the transgene insertion. From the physical mapping results, we propose a model of the gross rearrangements that accompanied transgene integration and discuss its implications for evaluating candidate genes for exma. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Loading next page...
 
/lp/springer_journal/exma-an-x-linked-insertional-mutation-that-disrupts-forebrain-and-eye-0jUhUT23Sq
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-001-2121-z
Publisher site
See Article on Publisher Site

Abstract

Formation of the neural tube plays a primary role in establishing the body plan of the vertebrate embryo. Here we describe the phenotype and physical mapping of a highly penetrant X-linked male-lethal murine mutation, exma (exencephaly, microphthalmia/anophthalmia), that specifically disrupts development of the rostral neural tube and eye. The mutation arose from the random insertion of a transgene into the mouse X Chromosome (Chr). Eighty-three percent of transgenic male embryos display an open, disorganized forebrain and lack optic vesicles. No transgenic males survive beyond birth. Hemizygous females show a variable phenotype, including reduced viability and occasional exencephaly and/or microphthalmia. Altered or reduced expression patterns of Otx2, Pax6, Six3, and Mrx, known markers of early forebrain and eye development, confirmed the highly disorganized structure of the forebrain and lack of eye development in affected exma male embryos. Physical mapping of the transgene by FISH localized a single insertion site to the interval between Dmd and Zfx on the X Chr. A 1-Mb contig of BAC clones was assembled by using sequences flanking the transgene and revealed that the insertion lies close to Pola1 and Arx, a gene encoding a highly conserved homeobox protein known to be expressed in the developing forebrain of the mouse. Data from Southern blots of normal and transgenic DNA demonstrated that a large segment of DNA encompassing Arx and including part of Pola1 was duplicated as a result of the transgene insertion. From the physical mapping results, we propose a model of the gross rearrangements that accompanied transgene integration and discuss its implications for evaluating candidate genes for exma.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 12, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off