Existence and Relaxation Theorems for Nonlinear Multivalued Boundary Value Problems

Existence and Relaxation Theorems for Nonlinear Multivalued Boundary Value Problems In this paper we consider a general nonlinear boundary value problem for second-order differential inclusions. We prove two existence theorems, one for the ``convex'' problem and the other for the ``nonconvex'' problem. Then we show that the solution set of the latter is dense in the C 1 (T,R N ) -norm to the solution set of the former (relaxation theorem). Subsequently for a Dirichlet boundary value problem we prove the existence of extremal solutions and we show that they are dense in the solutions of the convexified problem for the C 1 (T,R N ) -norm . Our tools come from multivalued analysis and the theory of monotone operators and our proofs are based on the Leray—Schauder principle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Existence and Relaxation Theorems for Nonlinear Multivalued Boundary Value Problems

Loading next page...
 
/lp/springer_journal/existence-and-relaxation-theorems-for-nonlinear-multivalued-boundary-pvrJYLtP3Z
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s002459900106
Publisher site
See Article on Publisher Site

Abstract

In this paper we consider a general nonlinear boundary value problem for second-order differential inclusions. We prove two existence theorems, one for the ``convex'' problem and the other for the ``nonconvex'' problem. Then we show that the solution set of the latter is dense in the C 1 (T,R N ) -norm to the solution set of the former (relaxation theorem). Subsequently for a Dirichlet boundary value problem we prove the existence of extremal solutions and we show that they are dense in the solutions of the convexified problem for the C 1 (T,R N ) -norm . Our tools come from multivalued analysis and the theory of monotone operators and our proofs are based on the Leray—Schauder principle.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Apr 1, 2024

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off