Exceptional quantum walk search on the cycle

Exceptional quantum walk search on the cycle Quantum walks are standard tools for searching graphs for marked vertices, and they often yield quadratic speedups over a classical random walk’s hitting time. In some exceptional cases, however, the system only evolves by sign flips, staying in a uniform probability distribution for all time. We prove that the one-dimensional periodic lattice or cycle with any arrangement of marked vertices is such an exceptional configuration. Using this discovery, we construct a search problem where the quantum walk’s random sampling yields an arbitrary speedup in query complexity over the classical random walk’s hitting time. In this context, however, the mixing time to prepare the initial uniform state is a more suitable comparison than the hitting time, and then, the speedup is roughly quadratic. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Exceptional quantum walk search on the cycle

Loading next page...
 
/lp/springer_journal/exceptional-quantum-walk-search-on-the-cycle-ZkCgZcyuVr
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1606-y
Publisher site
See Article on Publisher Site

Abstract

Quantum walks are standard tools for searching graphs for marked vertices, and they often yield quadratic speedups over a classical random walk’s hitting time. In some exceptional cases, however, the system only evolves by sign flips, staying in a uniform probability distribution for all time. We prove that the one-dimensional periodic lattice or cycle with any arrangement of marked vertices is such an exceptional configuration. Using this discovery, we construct a search problem where the quantum walk’s random sampling yields an arbitrary speedup in query complexity over the classical random walk’s hitting time. In this context, however, the mixing time to prepare the initial uniform state is a more suitable comparison than the hitting time, and then, the speedup is roughly quadratic.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off