Exact Zernike and pseudo-Zernike moments image reconstruction based on circular overlapping blocks and Chamfer distance

Exact Zernike and pseudo-Zernike moments image reconstruction based on circular overlapping... This study aims to explore a novel approach to reconstruct multi-gray-level images based on circular blocks reconstruction method using two exact and fast moments: Zernike (CBR-EZM) and pseudo-Zernike (CBR-EPZM): An image is first divided into a set of sub-images which are then reconstructed independently. We also introduced Chamfer distance (CD) to capitalize on the use of discrete distance instead of Euclidean one. The combination of our methods and CD leads to CBR-EZM-CD and CBR-EPZM-CD methods. Obviously, image partitioning offers significant advantages, but an undesirable circular blocking effect can occur. To mitigate this effect, we have implemented overlapping feature to our new methods leading to OCBR-EZM-CD and OCBR-EPZM-CD, by exploiting neighborhood information of the circular blocks. The main motivation of this novel approach is to explore new applications of Zernike and pseudo-Zernike moments. One of the fields is feature extraction for pattern recognition: Zernike and pseudo-Zernike moments are well known to capture only the global features, but thanks to the circular block reconstruction, we can now use those moments to extract also local features. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Signal, Image and Video Processing" Springer Journals

Exact Zernike and pseudo-Zernike moments image reconstruction based on circular overlapping blocks and Chamfer distance

Loading next page...
 
/lp/springer_journal/exact-zernike-and-pseudo-zernike-moments-image-reconstruction-based-on-3BOq1UXTlj
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Signal,Image and Speech Processing; Image Processing and Computer Vision; Computer Imaging, Vision, Pattern Recognition and Graphics; Multimedia Information Systems
ISSN
1863-1703
eISSN
1863-1711
D.O.I.
10.1007/s11760-017-1088-5
Publisher site
See Article on Publisher Site

Abstract

This study aims to explore a novel approach to reconstruct multi-gray-level images based on circular blocks reconstruction method using two exact and fast moments: Zernike (CBR-EZM) and pseudo-Zernike (CBR-EPZM): An image is first divided into a set of sub-images which are then reconstructed independently. We also introduced Chamfer distance (CD) to capitalize on the use of discrete distance instead of Euclidean one. The combination of our methods and CD leads to CBR-EZM-CD and CBR-EPZM-CD methods. Obviously, image partitioning offers significant advantages, but an undesirable circular blocking effect can occur. To mitigate this effect, we have implemented overlapping feature to our new methods leading to OCBR-EZM-CD and OCBR-EPZM-CD, by exploiting neighborhood information of the circular blocks. The main motivation of this novel approach is to explore new applications of Zernike and pseudo-Zernike moments. One of the fields is feature extraction for pattern recognition: Zernike and pseudo-Zernike moments are well known to capture only the global features, but thanks to the circular block reconstruction, we can now use those moments to extract also local features.

Journal

"Signal, Image and Video Processing"Springer Journals

Published: Apr 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off