Exact simulation of coined quantum walks with the continuous-time model

Exact simulation of coined quantum walks with the continuous-time model The connection between coined and continuous-time quantum walk models has been addressed in a number of papers. In most of those studies, the continuous-time model is derived from coined quantum walks by employing dimensional reduction and taking appropriate limits. In this work, we produce the evolution of a coined quantum walk on a generic graph using a continuous-time quantum walk on a larger graph. In addition to expanding the underlying structure, we also have to switch on and off edges during the continuous-time evolution to accommodate the alternation between the shift and coin operators from the coined model. In one particular case, the connection is very natural, and the continuous-time quantum walk that simulates the coined quantum walk is driven by the graph Laplacian on the dynamically changing expanded graph. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Exact simulation of coined quantum walks with the continuous-time model

Loading next page...
 
/lp/springer_journal/exact-simulation-of-coined-quantum-walks-with-the-continuous-time-Zjc6k0TRu1
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1475-9
Publisher site
See Article on Publisher Site

Abstract

The connection between coined and continuous-time quantum walk models has been addressed in a number of papers. In most of those studies, the continuous-time model is derived from coined quantum walks by employing dimensional reduction and taking appropriate limits. In this work, we produce the evolution of a coined quantum walk on a generic graph using a continuous-time quantum walk on a larger graph. In addition to expanding the underlying structure, we also have to switch on and off edges during the continuous-time evolution to accommodate the alternation between the shift and coin operators from the coined model. In one particular case, the connection is very natural, and the continuous-time quantum walk that simulates the coined quantum walk is driven by the graph Laplacian on the dynamically changing expanded graph.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 16, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off