Evolutionary topology optimization of continuum structures with smooth boundary representation

Evolutionary topology optimization of continuum structures with smooth boundary representation This paper develops an extended bi-directional evolutionary structural optimization (BESO) method for topology optimization of continuum structures with smoothed boundary representation. In contrast to conventional zigzag BESO designs and removal/addition of elements, the newly proposed evolutionary topology optimization (ETO) method, determines implicitly the smooth structural topology by a level-set function (LSF) constructed by nodal sensitivity numbers. The projection relationship between the design model and the finite element analysis (FEA) model is established. The analysis of the design model is replaced by the FEA model with various elemental volume fractions, which are determined by the auxiliary LSF. The introduction of sensitivity LSF results in intermediate volume elements along the solid-void interface of the FEA model, thus contributing to the better convergence of the optimized topology for the design model. The effectiveness and robustness of the proposed method are verified by a series of 2D and 3D topology optimization design problems including compliance minimization and natural frequency maximization. It has been shown that the developed ETO method is capable of generating a clear and smooth boundary representation; meanwhile the resultant designs are less dependent on the initial guess design and the finite element mesh resolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural and Multidisciplinary Optimization Springer Journals

Evolutionary topology optimization of continuum structures with smooth boundary representation

Loading next page...
 
/lp/springer_journal/evolutionary-topology-optimization-of-continuum-structures-with-smooth-Ugzq5eC3uA
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Engineering; Theoretical and Applied Mechanics; Computational Mathematics and Numerical Analysis; Engineering Design
ISSN
1615-147X
eISSN
1615-1488
D.O.I.
10.1007/s00158-017-1846-6
Publisher site
See Article on Publisher Site

Abstract

This paper develops an extended bi-directional evolutionary structural optimization (BESO) method for topology optimization of continuum structures with smoothed boundary representation. In contrast to conventional zigzag BESO designs and removal/addition of elements, the newly proposed evolutionary topology optimization (ETO) method, determines implicitly the smooth structural topology by a level-set function (LSF) constructed by nodal sensitivity numbers. The projection relationship between the design model and the finite element analysis (FEA) model is established. The analysis of the design model is replaced by the FEA model with various elemental volume fractions, which are determined by the auxiliary LSF. The introduction of sensitivity LSF results in intermediate volume elements along the solid-void interface of the FEA model, thus contributing to the better convergence of the optimized topology for the design model. The effectiveness and robustness of the proposed method are verified by a series of 2D and 3D topology optimization design problems including compliance minimization and natural frequency maximization. It has been shown that the developed ETO method is capable of generating a clear and smooth boundary representation; meanwhile the resultant designs are less dependent on the initial guess design and the finite element mesh resolution.

Journal

Structural and Multidisciplinary OptimizationSpringer Journals

Published: Nov 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off