Evolutionary patterns in auxin action

Evolutionary patterns in auxin action This review represents the first effort ever to survey the entire literature on auxin (indole-3-acetic acid, IAA) action in all plants, with special emphasis on the green plant lineage, including charophytes (the green alga group closest to the land plants), bryophytes (the most basal land plants), pteridophytes (vascular non-seed plants), and seed plants. What emerges from this survey is the surprising perspective that the physiological mechanisms for regulating IAA levels and many IAA-mediated responses found in seed plants are also present in charophytes and bryophytes, at least in nascent forms. For example, the available evidence suggests that the apical regions of both charophytes and liverworts synthesize IAA via a tryptophan-independent pathway, with IAA levels being regulated via the balance between the rates of IAA biosynthesis and IAA degradation. The apical regions of all the other land plants utilize the same class of biosynthetic pathway, but they have the potential to utilize IAA conjugation and conjugate hydrolysis reactions to achieve more precise spatial and temporal control of IAA levels. The thallus tips of charophytes exhibit saturable IAA influx and efflux carriers, which are apparently not sensitive to polar IAA transport inhibitors. By contrast, two divisions of bryophyte gametophytes and moss sporophytes are reported to carry out polar IAA transport, but these groups exhibit differing sensitivities to those inhibitors. Although the IAA regulation of charophyte development has received almost no research attention, the bryophytes manifest a wide range of developmental responses, including tropisms, apical dominance, and rhizoid initiation, which are subject to IAA regulation that resembles the hormonal control over corresponding responses in seed plants. In pteridophytes, IAA regulates root initiation and vascular tissue differentiation in a manner also very similar to its effects on those processes in seed plants. Thus, it is concluded that the seed plants did not evolve de novo mechanisms for mediating IAA responses, but have rather modified pre-existing mechanisms already operating in the early land plants. Finally, this paper discusses the encouraging prospects for investigating the molecular evolution of auxin action. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Evolutionary patterns in auxin action

Loading next page...
 
/lp/springer_journal/evolutionary-patterns-in-auxin-action-FHmtIzUA7c
Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1015242627321
Publisher site
See Article on Publisher Site

Abstract

This review represents the first effort ever to survey the entire literature on auxin (indole-3-acetic acid, IAA) action in all plants, with special emphasis on the green plant lineage, including charophytes (the green alga group closest to the land plants), bryophytes (the most basal land plants), pteridophytes (vascular non-seed plants), and seed plants. What emerges from this survey is the surprising perspective that the physiological mechanisms for regulating IAA levels and many IAA-mediated responses found in seed plants are also present in charophytes and bryophytes, at least in nascent forms. For example, the available evidence suggests that the apical regions of both charophytes and liverworts synthesize IAA via a tryptophan-independent pathway, with IAA levels being regulated via the balance between the rates of IAA biosynthesis and IAA degradation. The apical regions of all the other land plants utilize the same class of biosynthetic pathway, but they have the potential to utilize IAA conjugation and conjugate hydrolysis reactions to achieve more precise spatial and temporal control of IAA levels. The thallus tips of charophytes exhibit saturable IAA influx and efflux carriers, which are apparently not sensitive to polar IAA transport inhibitors. By contrast, two divisions of bryophyte gametophytes and moss sporophytes are reported to carry out polar IAA transport, but these groups exhibit differing sensitivities to those inhibitors. Although the IAA regulation of charophyte development has received almost no research attention, the bryophytes manifest a wide range of developmental responses, including tropisms, apical dominance, and rhizoid initiation, which are subject to IAA regulation that resembles the hormonal control over corresponding responses in seed plants. In pteridophytes, IAA regulates root initiation and vascular tissue differentiation in a manner also very similar to its effects on those processes in seed plants. Thus, it is concluded that the seed plants did not evolve de novo mechanisms for mediating IAA responses, but have rather modified pre-existing mechanisms already operating in the early land plants. Finally, this paper discusses the encouraging prospects for investigating the molecular evolution of auxin action.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off