Evolutionary calibration of fractional fuzzy controllers

Evolutionary calibration of fractional fuzzy controllers Fuzzy controllers (FCs) that are based on integer schemes have demonstrated their performance in an extensive variety of applications. However, several dynamic systems can be more accurately controlled by fractional controllers yielding an increased interest in generalizing the design of FCs with fractional operators. In the design stage of fractional FCs, the parameter calibration process is transformed into a multidimensional optimization problem where fractional orders, as well as the controller parameters of the fuzzy system, are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their respective cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of fractional FCs. However, most of them still exhibit serious limitation since they frequently obtain sub-optimal solutions after an improper equilibrium between exploitation and exploration in their search strategies. This paper presents an algorithm for the optimal parameter calibration of fractional FCs. In order to determine the best parameters, the proposed method uses a new evolutionary method called Social Spider Optimization (SSO), which is inspired on the emulation of the collaborative behavior of social-spiders. In SSO, solutions imitate a set of spiders, which cooperate to each other by following the natural laws of a cooperative colony. Unlike most of the existing evolutionary algorithms, the method explicitly evades the concentration of individuals in the best positions, avoiding critical flaws such as the premature convergence to sub-optimal solutions and the limited balance of exploration-exploitation. Numerical simulations have been conducted on several plants to show the effectiveness of the proposed scheme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

Evolutionary calibration of fractional fuzzy controllers

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial