Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms

Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms Hypoxia at deep-sea hydrothermal vents represents one of the most basic challenges for metazoans, which then requires specific adaptations to acquire oxygen to meet their metabolic needs. Hydrothermal vent scale-worms (Polychaeta; Polynoidae) express large amounts of extracellular single- and multi-domain hemoglobins, in contrast with their shallow-water relatives that only possess intracellular globins in their nervous system (neuroglobins). We sequenced the gene encoding the single-domain (SD) globin from nine species of polynoids found in various vent and deep-sea reduced microhabitats (and associated constraints) to determine if the Polynoidae SD globins have been the targets of diversifying selection. Although extracellular, all the SD globins (and multi-domain ones) form a monophyletic clade that clusters within the intracellular globin group of other annelids, indicating that these hemoglobins have evolved from an intracellular myoglobin-like form. Positive selection could not be detected at the major ecological changes that the colonization of the deep-sea and hydrothermal vents represents. This suggests that no major structural modification was necessary to allow the globins to function under these conditions. The mere expression of these globins extracellularly may have been sufficiently advantageous for the polynoids living in hypoxic hydrothermal vents. Among hydrothermal vent species, positively selected amino acids were only detected in the phylogenetic lineage leading to the two mussel-commensal species (Branchipolynoe). In this lineage, the multiplicity of hemoglobins could have lessened the selective pressure on the SD hemoglobin, allowing the acquisition of novel functions by positive Darwinian selection. Conversely, the colonization of hotter environments (species of Branchinotogluma) does not seem to have required additional modifications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Evolution Springer Journals

Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms

Loading next page...
 
/lp/springer_journal/evolution-of-single-domain-globins-in-hydrothermal-vent-scale-worms-BQd5WhANvE
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Life Sciences; Evolutionary Biology; Microbiology; Plant Sciences; Plant Genetics and Genomics; Animal Genetics and Genomics; Cell Biology
ISSN
0022-2844
eISSN
1432-1432
D.O.I.
10.1007/s00239-017-9815-7
Publisher site
See Article on Publisher Site

Abstract

Hypoxia at deep-sea hydrothermal vents represents one of the most basic challenges for metazoans, which then requires specific adaptations to acquire oxygen to meet their metabolic needs. Hydrothermal vent scale-worms (Polychaeta; Polynoidae) express large amounts of extracellular single- and multi-domain hemoglobins, in contrast with their shallow-water relatives that only possess intracellular globins in their nervous system (neuroglobins). We sequenced the gene encoding the single-domain (SD) globin from nine species of polynoids found in various vent and deep-sea reduced microhabitats (and associated constraints) to determine if the Polynoidae SD globins have been the targets of diversifying selection. Although extracellular, all the SD globins (and multi-domain ones) form a monophyletic clade that clusters within the intracellular globin group of other annelids, indicating that these hemoglobins have evolved from an intracellular myoglobin-like form. Positive selection could not be detected at the major ecological changes that the colonization of the deep-sea and hydrothermal vents represents. This suggests that no major structural modification was necessary to allow the globins to function under these conditions. The mere expression of these globins extracellularly may have been sufficiently advantageous for the polynoids living in hypoxic hydrothermal vents. Among hydrothermal vent species, positively selected amino acids were only detected in the phylogenetic lineage leading to the two mussel-commensal species (Branchipolynoe). In this lineage, the multiplicity of hemoglobins could have lessened the selective pressure on the SD hemoglobin, allowing the acquisition of novel functions by positive Darwinian selection. Conversely, the colonization of hotter environments (species of Branchinotogluma) does not seem to have required additional modifications.

Journal

Journal of Molecular EvolutionSpringer Journals

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off