Evolution of H5 highly pathogenic avian influenza: sequence data indicate stepwise changes in the cleavage site

Evolution of H5 highly pathogenic avian influenza: sequence data indicate stepwise changes in the... The genetic composition of an H5 subtype hemagglutinin gene quasispecies, obtained from ostrich tissues that had been infected with H5 subtype influenza virus was analysed using a next generation sequencing approach. The first evidence for the reiterative copying of a poly (U) stretch in the connecting peptide region in the haemagglutinin cleavage site (HACS) by the viral RNA-dependent RNA polymerase (RdRp) is provided. Multiple non-consensus species of RNA were detected in the infected host, corresponding to likely intermediate sequences between the putative low pathogenic precursor nucleotide sequence of the H5 influenza strain and the highly pathogenic avian influenza virus gene sequence. In silico analysis of the identified RNA sequences predicted that the intermediary H5 sequence PQREKRGLF plays an important role in subsequent mutational events that relocate the HACS coding region from stable base-paired RNA regions to a single-stranded bulge, thereby priming the connecting peptide coding region for RdRp slippage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Evolution of H5 highly pathogenic avian influenza: sequence data indicate stepwise changes in the cleavage site

Loading next page...
 
/lp/springer_journal/evolution-of-h5-highly-pathogenic-avian-influenza-sequence-data-22dQsvBDCt
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-017-3337-x
Publisher site
See Article on Publisher Site

Abstract

The genetic composition of an H5 subtype hemagglutinin gene quasispecies, obtained from ostrich tissues that had been infected with H5 subtype influenza virus was analysed using a next generation sequencing approach. The first evidence for the reiterative copying of a poly (U) stretch in the connecting peptide region in the haemagglutinin cleavage site (HACS) by the viral RNA-dependent RNA polymerase (RdRp) is provided. Multiple non-consensus species of RNA were detected in the infected host, corresponding to likely intermediate sequences between the putative low pathogenic precursor nucleotide sequence of the H5 influenza strain and the highly pathogenic avian influenza virus gene sequence. In silico analysis of the identified RNA sequences predicted that the intermediary H5 sequence PQREKRGLF plays an important role in subsequent mutational events that relocate the HACS coding region from stable base-paired RNA regions to a single-stranded bulge, thereby priming the connecting peptide coding region for RdRp slippage.

Journal

Archives of VirologySpringer Journals

Published: Mar 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off