Evolution of a beach nourishment project using dredged sand from navigation channel, Dunkirk, northern France

Evolution of a beach nourishment project using dredged sand from navigation channel, Dunkirk,... The largest beach replenishment project ever in France was completed in February 2014 in Dunkirk on the coast of northern France. A volume of 1.5 × 106 m3 of sand extracted from a navigation channel was placed on the beach to build up a 150 to 300 m wide supratidal platform in front of a dike, called « Digue des Alliés », which protects several residential districts of Dunkirk from marine flooding. High resolution topographic surveys were carried out during 2½ years to monitor beach morphological changes, completed by a hydrodynamic field experiment conducted in February 2016. Approximately −138,200 m3 of sand, corresponding to 9.2% of the initial nourishment volume, were eroded over the nourishment area in about 2 years. An obvious decrease in erosion eastward with a shift from erosion to accumulation was observed, suggesting an eastward redistribution of sand. This longshore sand drift is beneficial for the eastward beach of Malo-les-Bains where most of the recreational activities are concentrated. Hydrodynamic measurements showed that waves and wave-induced currents play a major role on the longshore sand redistribution compared to tidal flows. Strong relationships were observed between cumulative offshore wave power and beach volume change during distinct beach survey periods (R2 = 0.79 to 0.87), with more significant correlations for northerly waves. A slight decrease in erosion during the second year compared to the first year after nourishment suggests that the loss of sand should decrease after an initial phase of rapid readjustment of the beach shape towards equilibrium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Coastal Conservation Springer Journals

Evolution of a beach nourishment project using dredged sand from navigation channel, Dunkirk, northern France

Loading next page...
 
/lp/springer_journal/evolution-of-a-beach-nourishment-project-using-dredged-sand-from-yn25gbgAFS
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Geography; Geography, general; Coastal Sciences; Oceanography; Nature Conservation; Remote Sensing/Photogrammetry
ISSN
1400-0350
eISSN
1874-7841
D.O.I.
10.1007/s11852-017-0514-8
Publisher site
See Article on Publisher Site

Abstract

The largest beach replenishment project ever in France was completed in February 2014 in Dunkirk on the coast of northern France. A volume of 1.5 × 106 m3 of sand extracted from a navigation channel was placed on the beach to build up a 150 to 300 m wide supratidal platform in front of a dike, called « Digue des Alliés », which protects several residential districts of Dunkirk from marine flooding. High resolution topographic surveys were carried out during 2½ years to monitor beach morphological changes, completed by a hydrodynamic field experiment conducted in February 2016. Approximately −138,200 m3 of sand, corresponding to 9.2% of the initial nourishment volume, were eroded over the nourishment area in about 2 years. An obvious decrease in erosion eastward with a shift from erosion to accumulation was observed, suggesting an eastward redistribution of sand. This longshore sand drift is beneficial for the eastward beach of Malo-les-Bains where most of the recreational activities are concentrated. Hydrodynamic measurements showed that waves and wave-induced currents play a major role on the longshore sand redistribution compared to tidal flows. Strong relationships were observed between cumulative offshore wave power and beach volume change during distinct beach survey periods (R2 = 0.79 to 0.87), with more significant correlations for northerly waves. A slight decrease in erosion during the second year compared to the first year after nourishment suggests that the loss of sand should decrease after an initial phase of rapid readjustment of the beach shape towards equilibrium.

Journal

Journal of Coastal ConservationSpringer Journals

Published: May 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off